2

3

4

5

6

7

8

9

BOARD ORDER #160413-01 REQUIRING THE CITY OF LOS ANGELES TO UNDERTAKE MEASURES TO CONTROL PM<sub>10</sub> EMISSIONS FROM THE DRIED BED OF OWENS LAKE

To comply with the federal Clean Air Act and state law for the control of particulate matter 10 microns in size or less (PM<sub>10</sub>) emitted from the dried bed of Owens Lake, the Governing Board of the Great Basin Unified Air Pollution Control District (District) orders the City of Los Angeles (City) as follows:

PREAMBLE

A. WHEREAS the federal Clean Air Act, state law and orders duly adopted by the 10 District, the 1998 Owens Valley PM<sub>10</sub> Planning Area Demonstration of Attainment State 11 Implementation Plan (1998 SIP) dated November 16, 1998, the 2003 Revision to the Owens 12 Valley PM<sub>10</sub> Planning Area Demonstration of Attainment State Implementation Plan (2003 SIP) 13 dated November 13, 2003, the 2008 Revision to the Owens Valley PM<sub>10</sub> Planning Area 14 Demonstration of Attainment State Implementation Plan (2008 SIP), 2013 Amendment to the 15 Owens Valley PM10 SIP dated September 16, 2013 (2013 SIP Amendment) require the City to 16 implement a series of measures and actions to reduce particulate emissions from the Owens Lake 17 bed by a minimum of five percent per year such that the Owens Valley Planning Area (OVPA) 18 will attain and maintain the federal 24-hour National Ambient Air Quality Standards (NAAQS) 19 for  $PM_{10}$  by the statutory deadlines, and to achieve compliance with the California Ambient Air 20 Quality Standard (CAAQS) for PM<sub>10</sub>; 21

B. WHEREAS, the District is required by law to maintain its discretion to protect the
 environment, public health and safety, this Order is intended to fulfill those duties without
 improperly constraining that lawful exercise of discretion;

C. WHEREAS, in 2008, the District adopted Governing Board Order (Board Order)
#080128-01 and submitted the Board Order to the California Air Resources Board (CARB) and
the U.S. Environmental Protection Agency (EPA) as part of the 2008 SIP (2008 SIP Order); and
CARB approved the 2008 SIP and Order and submitted them to the EPA for approval, which is
pending before EPA; and in addition, the provisions of the 2008 SIP Order were approved by

2 EPA as part of the Coso Junction Maintenance Plan in 2010 (75 Fed. Reg. 54031 [September 3,
3 2010]);

D. WHEREAS, in 2013, the District amended the 2008 SIP Order by adopting Board
Order #130916-01 (2013 SIP Amendment) to extend certain deadlines and incorporate provisions
for the modification of PM<sub>10</sub> control projects known as the "Phase 7 Project" and the "Keeler
Dunes Project" as discussed in the 2016 OVPA SIP Chapter 6 that are necessary to meet the air
quality standards, and submitted this amendment to CARB and EPA for approval, which is
pending;

E. WHEREAS, through modeling and monitoring requirements set forth in adopted
SIPs and SIP amendments, the District has determined that additional measures and actions will
be required to continue to reduce PM<sub>10</sub> emissions in the OVPA such that the OVPA will attain
and maintain the federal 24-hour NAAQS for PM<sub>10</sub> by the statutory deadlines, and to meet the
CAAQS at residences within communities zoned for residential use in the Inyo County General
Plan Use Diagrams in accordance with District Rule 401.D (State Standard);

F. WHEREAS, in 2011 a dispute arose between the District and the City regarding
the District's requirements for the City to control dust from additional areas at Owens Lake
beyond those areas identified in the 2008 SIP, followed by a series of appeals to the California
Air Resources Board under Health & Safety Code Section 42316;

- G. WHEREAS, those disputes were fully and finally resolved by a Stipulated
  Judgment entered in favor of the District on December 30, 2014 in the case entitled *City of Los Angeles, et al. v California Air Resources Board*, Sacramento Superior Court, Case No. 34-201380001451-CU-WM-GDS (Stipulated Judgment). Under the Stipulated Judgment, the City agreed
  in part to operate and maintain existing dust control measures, and implement additional dust
  control measures by December 31, 2017, and the District agreed, in part, to revise the 2008 SIP as
  provided in the Stipulated Judgment;
- H. WHEREAS, the purpose and intention of this Board Order is to revise and
  supersede the 2008 SIP Order with the applicable provisions of Board Order #080128-01 and
  Board Order #130916-01 (2013 SIP Amendment). This Board Order (2016 SIP Order) will be

- enforceable upon adoption by the District as state law, and will be submitted to the CARB and EPA for their review and approval as a proposed revision to the Owens Valley PM<sub>10</sub> Planning 3 Area Demonstration of Attainment State Implementation Plan (2016 SIP);
- 4

2

I. WHEREAS, in consideration of the District's continuing duties under federal and 5 state law, including but not limited to the Clean Air Act and California Health and Safety Code, 6 to control PM<sub>10</sub> emissions from the Owens Lake bed without interruption, the District intends, if 7 this Order is stayed or disapproved, that Board Orders #080128-01 and #130916-01, and the 8 Stipulated Judgment shall continue to be in effect, so that at all times there will be continuous 9 control of these emissions; 10

J. WHEREAS, the District thereby intends that if this Order is stayed due to a legal 11 challenge, including but not limited to a challenge to this Order under Health & Safety Code 12 Section 42316, to the 2016 SIP, or to the Environmental Impact Report for this SIP, or if this 13 Order is disapproved by CARB, the District will revert to enforce the terms of Board Orders 14 #080128-01 and #130916-01, and the Stipulated Judgment which shall continue to be in effect 15 and shall remain in full force for the duration of any stay or, in the case of disapproval, unless and 16 until another Order is issued by this Board; and 17

K. WHEREAS, pursuant to Section 172(e) of the Clean Air Act, to prevent the 18 deterioration of air quality due to dismantling or "backsliding" on control measures that have 19 already been implemented before any such stay or disapproval, the District intends that the City 20 shall continue to operate and maintain all control measures that are operational or implemented, 21 or were in the process of transitioning to a different control measure at the time of any such stay 22 or disapproval without interruption, unless and until a further Order of the District allows for such 23 interruption; 24

**THEREFORE, IT IS HEREBY ORDERED AS FOLLOWS:** 

ORDER

25

# 26

#### OWENS LAKE BED PM<sub>10</sub> CONTROL MEASURE AREAS 27

Existing PM<sub>10</sub> controls – At all times starting from January 1, 2016, the City shall 1. 28 continue to operate and maintain the 45.0 square miles of existing controls for PM<sub>10</sub> as

| 1  |                                                                                        |                                                                                    |  |  |  |
|----|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|
| 2  | described in this Paragraph in the areas on the Owens Lake bed within the Dust Control |                                                                                    |  |  |  |
| 3  | Areas (DCA) delineated in Exhibit 1:                                                   |                                                                                    |  |  |  |
| 4  | А.                                                                                     | On the 29.8 square miles ordered by Board Order #031113-01 (2003 SIP) within       |  |  |  |
| 5  |                                                                                        | the 2003 DCA, the City shall continue to operate and maintain District-approved    |  |  |  |
| 6  |                                                                                        | Best Available Control Measures (BACM) as described in Paragraphs 9 through        |  |  |  |
| 7  |                                                                                        | 12.                                                                                |  |  |  |
| 8  | В.                                                                                     | On the 12.7 square miles ordered by Board Order #080128-01 (2008 SIP) within       |  |  |  |
| 9  |                                                                                        | the 2006 DCA, the City shall continue to operate and maintain District-approved    |  |  |  |
| 10 |                                                                                        | BACM as described in Paragraphs 9 through 12, except as follows:                   |  |  |  |
| 11 |                                                                                        | i. On the T1A-1 area consisting of 0.39 square miles within the 12.7 mile          |  |  |  |
| 12 |                                                                                        | 2006 DCA as shown in Exhibit 1, the City shall continue to operate and             |  |  |  |
| 13 |                                                                                        | maintain sand fences in the natural occurring partially vegetated and              |  |  |  |
| 14 |                                                                                        | seasonally wet T1A-1 area as required to comply with the minimum dust              |  |  |  |
| 15 |                                                                                        | control efficiency (MDCE) performance standards set forth in the 2008 SIP          |  |  |  |
| 16 |                                                                                        | Order and shown in Exhibit 2, and;                                                 |  |  |  |
| 17 |                                                                                        | ii. For the "Phase 7a" area consisting of 3.1 square miles within the 12.7 mile    |  |  |  |
| 18 |                                                                                        | 2006 DCA as shown in Exhibit 1, the City shall install and fully operate all       |  |  |  |
| 19 |                                                                                        | BACM by December 31, 2015, except for any Managed Vegetation                       |  |  |  |
| 20 |                                                                                        | BACM within this area, for which the City shall install all infrastructure         |  |  |  |
| 21 |                                                                                        | and plant materials by December 31, 2015, and achieve fully-compliant              |  |  |  |
| 22 |                                                                                        | Managed Vegetation BACM as set forth in Paragraph 10 by December 31,               |  |  |  |
| 23 |                                                                                        | 2017. This Paragraph is further subject to the exception for Phase 7b areas        |  |  |  |
| 24 |                                                                                        | set forth in Paragraph 2.                                                          |  |  |  |
| 25 | C.                                                                                     | On 0.5 square-miles on the south end of Owens Lake known as the "Channel           |  |  |  |
| 26 |                                                                                        | Area," the City shall continue to operate and maintain dust controls using         |  |  |  |
| 27 |                                                                                        | application of water to enhance existing vegetation coverage as required to comply |  |  |  |
| 28 |                                                                                        | with the MDCE performance standards set forth in the 2008 SIP Order and shown      |  |  |  |
|    |                                                                                        | in Exhibit 2.                                                                      |  |  |  |

| 1        |    |                                                                            |                                                                                           |  |  |  |  |  |
|----------|----|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|--|
| 2        |    | D.                                                                         | D. On the 2.0 square miles known as the Phase 8 area identified in Board Order            |  |  |  |  |  |
| 3        |    | #110317-01, the City shall continue to operate and maintain Gravel Blanket |                                                                                           |  |  |  |  |  |
| 4        |    |                                                                            | BACM as set forth in Paragraph 11.                                                        |  |  |  |  |  |
| 5        | 2. | Phase                                                                      | 7b Cultural Resource Areas                                                                |  |  |  |  |  |
| 6        |    | A.                                                                         | For the Phase 7a project area delineated in Exhibit 1, certain subareas contain           |  |  |  |  |  |
| 7        |    |                                                                            | cultural resources that qualify the subarea as an "Eligible Cultural Resource             |  |  |  |  |  |
| 8        |    |                                                                            | Areas" under the provision of the California Register of Historic Resources. These        |  |  |  |  |  |
| 9        |    |                                                                            | areas are designated as "Phase 7b" areas and were removed from the Phase 7a area          |  |  |  |  |  |
| 10       |    |                                                                            | for controls by Board Order #130916-01.                                                   |  |  |  |  |  |
| 11       |    | B.                                                                         | The District Board will decide at a later date whether $PM_{10}$ controls are required in |  |  |  |  |  |
| 12       |    |                                                                            | the Phase 7b areas in order to attain and maintain the NAAQS and State Standard           |  |  |  |  |  |
| 13       |    |                                                                            | after following the process described in Board Order #130916-01, and if necessary         |  |  |  |  |  |
| 14       |    |                                                                            | will issue a separate Board Order(s) for controls in those areas.                         |  |  |  |  |  |
| 15       | 3. | Phase                                                                      | 9/10 Project to Implement 2011 and 2012 Supplemental Control Requirement                  |  |  |  |  |  |
| 16       |    | Deterr                                                                     | ninations                                                                                 |  |  |  |  |  |
| 17       |    | А.                                                                         | In addition to the 45.0 square miles of controls set forth in Paragraph 1, by             |  |  |  |  |  |
| 18       |    |                                                                            | December 31, 2017, the City shall construct and permanently operate a $PM_{10}$           |  |  |  |  |  |
| 19       |    |                                                                            | control project by selecting and installing BACM on 3.62 square miles of lakebed          |  |  |  |  |  |
| 20       |    |                                                                            | areas identified in the 2011 Supplemental Control Requirements Determination              |  |  |  |  |  |
| 21       |    |                                                                            | (SCRD) and 2012 SCRD (collectively referred to as the "Phase 9/10" areas). With           |  |  |  |  |  |
| 22       |    |                                                                            | the exception of Eligible Cultural Resource Areas removed from the Phase 7a area          |  |  |  |  |  |
| 23       |    |                                                                            | under the provisions set forth in Paragraph 2, the Phase 9/10 areas shall bring the       |  |  |  |  |  |
| 24       |    |                                                                            | total area of the City's dust controls on the Owens Lake bed to 48.6 square miles.        |  |  |  |  |  |
| 25       |    |                                                                            | The construction deadline set forth in this paragraph is subject to the Force             |  |  |  |  |  |
| 26       |    |                                                                            | Majeure and Stipulated Penalties provisions set forth in Paragraphs 16 and 17.            |  |  |  |  |  |
| 27       |    | B.                                                                         | The City may submit an application to the District's Air Pollution Control Officer        |  |  |  |  |  |
| 27       |    |                                                                            |                                                                                           |  |  |  |  |  |
| 27<br>28 |    |                                                                            | (APCO) to approve modifications to the City's proposed Phase 9/10 project or              |  |  |  |  |  |

| 1  |                                                                                                                   |
|----|-------------------------------------------------------------------------------------------------------------------|
| 2  | resources. The District shall consider and decide the City's application under the                                |
| 3  | procedures contained in the 2013 Stipulated Abatement Order #130819-01.                                           |
| 4  | C. The Phase 9/10 project will use dust control measures that are waterless or "water                             |
| 5  | neutral" by offsetting any new or increased water use with water savings                                          |
| 6  | elsewhere on the lakebed.                                                                                         |
| 7  | 4. <u>Minor adjustments to <math>PM_{10}</math> control area boundaries</u> – Upon written request by the City to |
| 8  | the District and written approval by the District's APCO, minor adjustments may be made                           |
| 9  | to the interior and exterior boundaries of the Phase 9/10 project area to avoid impacts to                        |
| 10 | existing resources or features, or for constructability reasons, which approval shall not be                      |
| 11 | unreasonably withheld. The City shall demonstrate by District-approved modeling that                              |
| 12 | such adjustments do not have an impact on the ability of the Phase 9/10 area to meet the                          |
| 13 | PM <sub>10</sub> control performance requirements.                                                                |
| 14 | PM <sub>10</sub> CONTROL MEASURES                                                                                 |
| 15 | 5. The City shall implement BACM $PM_{10}$ control measures as set forth in this Order and as                     |
| 16 | described below in Paragraphs 9 through 11, or where allowed by the District, the MDCE                            |
| 17 | BACM PM <sub>10</sub> control measures described in Paragraph 12.                                                 |
| 18 | 6. All $PM_{10}$ control measures within the 12.7 square mile 2006 Supplemental DCA identifie                     |
| 19 | in Paragraph 1.B shall be designed, constructed, installed, operated and maintained by the                        |
| 20 | City to achieve at least the initial target shown in Exhibit 2. MDCEs are the actual dust                         |
| 21 | control measures control efficiencies required to meet the PM <sub>10</sub> NAAQS, based on data                  |
| 22 | collected during the four-year period between July 2002 and June 2006.                                            |
| 23 | 7. To complete implementation of a specified control measure by a date as required by this                        |
| 24 | Order means that the control measure shall be constructed, installed, operated and                                |
| 25 | maintained without interruption, so as to comply with the performance standards for the                           |
| 26 | specified control measure no later than 5:00 p.m. on the required date.                                           |
| 27 | CONTINGENCY PM10 CONTROL MEASURES                                                                                 |
| 28 | 8. Additional BACM Contingency Measures to meet National Ambient Air Quality                                      |
|    | Standards (Clean Air Act Section 172(c)(9), 42 U.S.C. § 7502(c)(9).)                                              |
|    |                                                                                                                   |

| 1  |    |                                                                                        |
|----|----|----------------------------------------------------------------------------------------|
| 2  | А. | To provide the emission reductions necessary to meet the NAAQS and State               |
| 3  |    | Standard in the OVPA, the APCO may order the City on or any time after January         |
| 4  |    | 1, 2016 to implement BACM $PM_{10}$ control measures on additional areas on the        |
| 5  |    | dried Owens Lake bed from those implemented under Paragraphs 1-3 of this order         |
| 6  |    | (BACM Contingency Measures). The City may be ordered to implement BACM                 |
| 7  |    | Contingency Measures such that the total area where the City shall implement           |
| 8  |    | BACM $PM_{10}$ controls is up to 53.4 square miles, and the City shall comply with     |
| 9  |    | those orders without appeal. These control areas need not be contiguous.               |
| 10 | В. | The District will not order the City to implement mitigation measures on               |
| 11 |    | additional areas on the lakebed beyond the total area of 53.4 square miles under       |
| 12 |    | Health & Safety Code Section 42316 or any other law, to control windblown dust         |
| 13 |    | emissions (including $PM_{10}$ , $PM_{2.5}$ or any speciated components or products of |
| 14 |    | PM). The provisions in this paragraph do not apply to fee orders issued to the City    |
| 15 |    | under Health & Safety Code Section 42316, or any orders for areas that are not on      |
| 16 |    | the dried Owens Lake bed.                                                              |
| 17 | C. | At least once in every calendar year, the APCO will make a determination as to         |
| 18 |    | whether BACM Contingency Measures are to be ordered. Any BACM                          |
| 19 |    | Contingency Measure orders shall be based on evidence presented to the APCO            |
| 20 |    | that the area considered for such order has caused or contributed to an exceedance     |
| 21 |    | of the NAAQS or State Standard, as described in Attachment B, the "2016 Owens          |
| 22 |    | Valley Planning Area Additional BACM Contingency Measures Determination                |
| 23 |    | Procedure."                                                                            |
| 24 | D. | Source areas that cause or contribute to a monitored or modeled exceedance of the      |
| 25 |    | NAAQS or State Standard may be new source areas, or may be areas with existing         |
| 26 |    | dust controls. For emissions from areas with existing dust controls, the City will     |
| 27 |    | have the choice of increasing the controls in the existing dust control areas or       |
| 28 |    | controlling other contributing sources that will result in lowering the monitored      |
|    |    | impact below the NAAQS or State Standard, if such areas exist. If the City             |
|    |    |                                                                                        |

| 1  |    |                                                                                      |
|----|----|--------------------------------------------------------------------------------------|
| 2  |    | chooses to increase the controls in existing areas, it shall prepare and submit a    |
| 3  |    | written application to the APCO that contains District-approved modeling which       |
| 4  |    | demonstrates that the monitored impact can be reduced below the NAAQS by             |
| 5  |    | increasing the controls in existing dust control areas. The APCO has sole            |
| 6  |    | discretion whether to approve or disapprove the application.                         |
| 7  | E. | The BACM Contingency Measures shall be limited to the Owens Lake bed below           |
| 8  |    | the Regulatory Shoreline elevation of 3,600.00 feet above mean sea level (amsl)      |
| 9  |    | and above the natural brine pool ordinary high water elevation of 3,553.55 feet      |
| 10 |    | amsl.                                                                                |
| 11 | F. | The BACM Contingency Measures areas will be controlled with waterless or             |
| 12 |    | water-neutral dust control measures by offsetting any new or increased water use     |
| 13 |    | with water savings elsewhere on the lakebed. The City is solely responsible for      |
| 14 |    | securing all permissions and authorizations necessary for those water savings.       |
| 15 |    | Failure or inability to secure such permissions and authorizations shall not relieve |
| 16 |    | the City from its obligation to timely install and operate the ordered Contingency   |
| 17 |    | Measures. This paragraph is subject to the provisions of Paragraph 16 if they are    |
| 18 |    | applicable.                                                                          |
| 19 | G. | The implementation of BACM Contingency Measures will be considered                   |
| 20 |    | contingency measures under Section 172(c)(9) of the federal Clean Air Act.           |
| 21 |    | Although the City may provide comment on a proposed BACM Contingency                 |
| 22 |    | Measures order by the APCO, the City shall not appeal or contest the APCO's          |
| 23 |    | order for dust controls included in the combined 53.4 square miles now or in the     |
| 24 |    | future in any administrative or judicial forum, under any law, statute or legal      |
| 25 |    | theory whatsoever including Health & Safety Code Section 42316.                      |
| 26 | Н. | All BACM Contingency Measures shall be installed by the City and be operational      |
| 27 |    | within three years of the date that the APCO orders the City to implement them,      |
| 28 |    | except that if the City selects the use of BACM Managed Vegetation in Paragraph      |
|    |    | 10 for any of the areas ordered for BACM Contingency Measures, the City shall        |

| 1  |                                                                                     |                                                                                        |  |  |  |  |
|----|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|--|--|
| 2  |                                                                                     | have all infrastructure and plants in place within three years, but will be allowed an |  |  |  |  |
| 3  | additional two years to achieve full vegetation-cover compliance as set forth in    |                                                                                        |  |  |  |  |
| 4  | Paragraph 10. The implementation deadline set forth in this paragraph is subject to |                                                                                        |  |  |  |  |
| 5  |                                                                                     | the Force Majeure and Stipulated Penalties provisions set forth in Paragraphs 16       |  |  |  |  |
| 6  |                                                                                     | and 17. The City shall be solely responsible for all CEQA compliance, and to the       |  |  |  |  |
| 7  |                                                                                     | extent joint documents are prepared under CEQA and NEPA, for CEQA/NEPA                 |  |  |  |  |
| 8  |                                                                                     | compliance, and other lease/permit requirements associated with any Contingency        |  |  |  |  |
| 9  |                                                                                     | Measure projects.                                                                      |  |  |  |  |
| 10 | I.                                                                                  | Within 60 days of the date that the APCO orders the City to implement the BACM         |  |  |  |  |
| 11 |                                                                                     | Contingency Measures, the City shall prepare and submit for the APCO's                 |  |  |  |  |
| 12 |                                                                                     | consideration and written approval, which approval shall not be unreasonably           |  |  |  |  |
| 13 |                                                                                     | withheld, a Remedial Action Plan (RAP) that specifies the type and location of         |  |  |  |  |
| 14 |                                                                                     | BACM to be installed and provides for the full and timely completion of those          |  |  |  |  |
| 15 |                                                                                     | measures. The plan shall contain intermediate milestones specifying the                |  |  |  |  |
| 16 |                                                                                     | completion dates for CEQA/NEPA compliance, construction bid award and                  |  |  |  |  |
| 17 |                                                                                     | control measure compliance.                                                            |  |  |  |  |
| 18 | J.                                                                                  | Cultural and biological resource protection and mitigation shall be incorporated to    |  |  |  |  |
| 19 |                                                                                     | the extent feasible as required by law into the design of Contingency Measure          |  |  |  |  |
| 20 |                                                                                     | control areas.                                                                         |  |  |  |  |
| 21 | PM <sub>10</sub> CONTE                                                              | ROL MEASURES                                                                           |  |  |  |  |
| 22 | 9. <u>BACM</u>                                                                      | M Shallow Flooding                                                                     |  |  |  |  |
| 23 | А.                                                                                  | The "Shallow Flooding" $PM_{10}$ control measure will apply water to the surface of    |  |  |  |  |
| 24 |                                                                                     | those areas of the lake bed where Shallow Flooding is used as a $PM_{10}$ control      |  |  |  |  |
| 25 |                                                                                     | measure. Water shall be applied in amounts and by means sufficient to achieve the      |  |  |  |  |
| 26 |                                                                                     | performance standards set forth in Paragraphs 9.B through 9.G below. The dates         |  |  |  |  |
| 27 |                                                                                     | by which Shallow Flooding areas are to comply with these performance standards         |  |  |  |  |
| 28 |                                                                                     | may be modified by the Dynamic Water Management provisions set forth in                |  |  |  |  |
|    |                                                                                     | Paragraph 9.F.                                                                         |  |  |  |  |
|    |                                                                                     |                                                                                        |  |  |  |  |

| 1  |    |                                                                                  |  |  |  |
|----|----|----------------------------------------------------------------------------------|--|--|--|
| 2  | В. | For all Shallow Flooding areas except those within the 2006 DCA as referenced in |  |  |  |
| 3  |    | Paragraph 1.B:                                                                   |  |  |  |
| 4  |    | i. At least 75 percent of each square mile designated as BACM Shallow            |  |  |  |
| 5  |    | Flooding areas shall continuously consist of standing water or surface-          |  |  |  |
| 6  |    | saturated soil, substantially evenly distributed for the period commencing       |  |  |  |
| 7  |    | on October 16 of each year, and ending on May 15 of the next year. For           |  |  |  |
| 8  |    | these Shallow Flood dust control areas, 75 percent of each entire                |  |  |  |
| 9  |    | contiguous area shall consist of substantially evenly distributed standing       |  |  |  |
| 10 |    | water or surface-saturated soil.                                                 |  |  |  |
| 11 |    | ii. Beginning May 16 and through May 31 of every year, Shallow Flooding          |  |  |  |
| 12 |    | areal wetness cover may be reduced to a minimum of 70 percent.                   |  |  |  |
| 13 |    | iii. Beginning June 1 and through June 15 of every year, Shallow Flooding        |  |  |  |
| 14 |    | areal wetness cover may be reduced to a minimum of 65 percent.                   |  |  |  |
| 15 |    | iv. Beginning June 16 and through June 30 of every year, Shallow Flooding        |  |  |  |
| 16 |    | areal wetness cover may be reduced to a minimum of 60 percent.                   |  |  |  |
| 17 |    | v. If for any Shallow Flooding area, the percent of areal wetness cover in the   |  |  |  |
| 18 |    | periods specified in Paragraphs 9.B.ii, iii, and iv, above, is below the         |  |  |  |
| 19 |    | minimum percentages specified for each BACM Shallow Flood area based             |  |  |  |
| 20 |    | on satellite imagery, and there were no monitored or modeled exceedances         |  |  |  |
| 21 |    | of the NAAQS at or above elevation 3,600 feet above mean sea level               |  |  |  |
| 22 |    | (Regulatory Shoreline), that area will be deemed to be in compliance, if the     |  |  |  |
| 23 |    | City demonstrates in writing and the APCO reasonably determines in               |  |  |  |
| 24 |    | writing that maximum water delivery flows were maintained throughout             |  |  |  |
| 25 |    | the applicable period.                                                           |  |  |  |
| 26 | C. | For Shallow Flooding areas within the 12.7 square-mile 2006 DCA referenced in    |  |  |  |
| 27 |    | in Paragraph 1.B:                                                                |  |  |  |
| 28 |    | i. The percentage of each area that must have substantially evenly distributed   |  |  |  |
|    |    | standing water or surface-saturated soil shall be based on the Shallow           |  |  |  |

| 1  |                                                                                                |  |  |  |
|----|------------------------------------------------------------------------------------------------|--|--|--|
| 2  | Flood Control Efficiency Curve (SFCE Curve) attached as Exhibit 3 to                           |  |  |  |
| 3  | achieve the control efficiency levels in the MDCE Map (Exhibit 2).                             |  |  |  |
| 4  | ii. For only those Shallow Flooding areas with control efficiencies of 99                      |  |  |  |
| 5  | percent or more:                                                                               |  |  |  |
| 6  | a. Beginning May 16 and through May 31 of every year, Shallow                                  |  |  |  |
| 7  | Flooding areal wetness cover may be reduced to a minimum of 70                                 |  |  |  |
| 8  | percent.                                                                                       |  |  |  |
| 9  | b. Beginning June 1 and through June 15 of every year, Shallow                                 |  |  |  |
| 10 | Flooding areal wetness cover may be reduced to a minimum of 65                                 |  |  |  |
| 11 | percent.                                                                                       |  |  |  |
| 12 | c. Beginning June 16 and through June 30 of every year, Shallow                                |  |  |  |
| 13 | Flooding areal wetness cover may be reduced to a minimum of 60                                 |  |  |  |
| 14 | percent.                                                                                       |  |  |  |
| 15 | d. If for any Shallow Flooding area, the percent of areal wetness cover                        |  |  |  |
| 16 | in the periods specified in Paragraph 9.B.ii, iii and iv, above, is                            |  |  |  |
| 17 | below the minimum percentages specified for each shallow flood                                 |  |  |  |
| 18 | area based on the air quality model for the analysis period, and                               |  |  |  |
| 19 | there were no monitored or modeled exceedances of the NAAQS at                                 |  |  |  |
| 20 | or above the Regulatory Shoreline, that area will be deemed to be in                           |  |  |  |
| 21 | compliance if the City demonstrates in writing and the APCO                                    |  |  |  |
| 22 | reasonably determines in writing that maximum water delivery                                   |  |  |  |
| 23 | flows were maintained throughout the applicable period.                                        |  |  |  |
| 24 | D. <u>Tillage With Shallow Flood BACM-Backup</u>                                               |  |  |  |
| 25 | i. The City may implement or transition BACM Shallow Flood areas to                            |  |  |  |
| 26 | "Tillage with Shallow Flood BACM Back-up (TWB <sup>2</sup> )," which shall consist             |  |  |  |
| 27 | of (1) soil tilling within all or portions of Shallow Flood BACM $PM_{10}$                     |  |  |  |
| 28 | control areas (TWB <sup><math>2</math></sup> Areas), and (2) the installation of all necessary |  |  |  |
|    | shallow flood infrastructure so that the TWB <sup>2</sup> Areas can be shallow-                |  |  |  |
|    |                                                                                                |  |  |  |

| 1  |      |                                                                                            |
|----|------|--------------------------------------------------------------------------------------------|
| 2  |      | flooded if ordered by the APCO as provided in Paragraph 9.D.v below. The                   |
| 3  |      | City shall at all times operate and maintain all TWB <sup>2</sup> areas so that they do    |
| 4  |      | not cause or contribute to exceedances of the NAAQS or State Standard.                     |
| 5  | ii.  | The City shall have the sole responsibility to obtain all required approvals               |
| 6  |      | and permits required by law for TWB <sup>2</sup> . The District will support the City's    |
| 7  |      | efforts to obtain these approvals and permits in compliance with the law.                  |
| 8  | iii. | The City's selection and implementation of TWB <sup>2</sup> shall comply with the          |
| 9  |      | procedures in Attachment A, Stipulated Judgment Attachment B, "Protocol                    |
| 10 |      | for Operation and Maintenance of Owens Lake Tillage with BACM                              |
| 11 |      | Backup" (TWB <sup>2</sup> Operations Protocol). The TWB <sup>2</sup> Operations Protocol   |
| 12 |      | shall address site selection, site dry-down, and measures to prevent untilled              |
| 13 |      | drying surfaces from becoming emissive during dry-down, tilling,                           |
| 14 |      | maintenance and rewetting. The City shall have sole discretion to modify                   |
| 15 |      | the TWB <sup>2</sup> Operations Protocol as necessary to ensure efficient operation of     |
| 16 |      | TWB <sup>2</sup> .                                                                         |
| 17 | iv.  | The District's monitoring and enforcement of TWB <sup>2</sup> Areas will comply            |
| 18 |      | with Attachment A, Stipulated Judgment Attachment C, the "Protocol for                     |
| 19 |      | Monitoring and Enforcing Owens Lake Tillage with BACM Backup"                              |
| 20 |      | (TWB <sup>2</sup> Monitoring Protocol). The TWB <sup>2</sup> Monitoring Protocol describes |
| 21 |      | the data to be collected and methods of analysis to determine if $TWB^2$                   |
| 22 |      | areas on the Owens Lake bed need maintenance and/or reflooding in order                    |
| 23 |      | to maintain or reestablish control efficiency for compliance with the                      |
| 24 |      | NAAQS or State Standard. Based on data and after consulting with the                       |
| 25 |      | City, the APCO shall have sole discretion to modify the TWB <sup>2</sup> Monitoring        |
| 26 |      | Protocol in writing as necessary to ensure air quality protection.                         |
| 27 | v.   | The APCO may order, and the City is required to reflood a TWB <sup>2</sup> area as         |
| 28 |      | provided in the TWB <sup>2</sup> Monitoring Protocol. Within 37 days of written            |
|    |      | order by the APCO that a $TWB^2$ area must be reflooded, the City shall                    |
|    |      |                                                                                            |

| 1  |                                                                                      |         |                                                                                         |  |
|----|--------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------|--|
| 2  |                                                                                      |         | complete reflooding of that area in accordance with approved Shallow                    |  |
| 3  |                                                                                      |         | Flooding BACM requirements.                                                             |  |
| 4  | vi. The City shall not appeal or contest the TWB <sup>2</sup> Protocol, any revision |         |                                                                                         |  |
| 5  | that protocol that comply with this Paragraph 9.D, or the APCO's order               |         |                                                                                         |  |
| 6  |                                                                                      |         | reflood a TWB <sup>2</sup> area now or in the future in any administrative or judicial  |  |
| 7  |                                                                                      |         | forum, under any law, statute or legal theory whatsoever including Health               |  |
| 8  |                                                                                      |         | & Safety Code Section 42316, except the City may contest an APCO order                  |  |
| 9  |                                                                                      |         | to reflood a TWB <sup>2</sup> area on the sole basis that the APCO did not follow the   |  |
| 10 |                                                                                      |         | TWB <sup>2</sup> Monitoring Protocol. Such a challenge shall be brought exclusively     |  |
| 11 |                                                                                      |         | to Sacramento County Superior Court to enforce the 2014 Stipulated                      |  |
| 12 |                                                                                      |         | Judgment, and not by an appeal under Health & Safety Code Section 42316                 |  |
| 13 |                                                                                      |         | or by any challenge in any other administrative or judicial forum. Any such             |  |
| 14 |                                                                                      |         | appeal shall not relieve the City of the duty to reflood a TWB <sup>2</sup> area within |  |
| 15 |                                                                                      |         | 37 days of a written order from the APCO unless the City seeks and                      |  |
| 16 |                                                                                      |         | obtains an injunction from the Court before the expiration of the 37-day                |  |
| 17 |                                                                                      |         | period to enjoin the reflooding.                                                        |  |
| 18 |                                                                                      | vii.    | The District and City shall conduct periodic joint inspections of the TWB <sup>2</sup>  |  |
| 19 |                                                                                      |         | Areas by the District and the City. The District will provide the City with at          |  |
| 20 |                                                                                      |         | least 24-hour notification of the time and location of the District's $TWB^2$           |  |
| 21 |                                                                                      |         | field inspections and testing.                                                          |  |
| 22 |                                                                                      | viii.   | The City may at its discretion file an application with the District to seek            |  |
| 23 |                                                                                      |         | approval of tillage without shallow flooding backup as BACM by                          |  |
| 24 |                                                                                      |         | following the procedures in Paragraph 13.                                               |  |
| 25 | E.                                                                                   | Brine I | BACM. The City may use the "Brine BACM" as a Shallow Flooding                           |  |
| 26 |                                                                                      | BACM    | I in areas that meet the definition for Brine BACM.                                     |  |
| 27 |                                                                                      | i.      | For an area to qualify for Brine BACM, it must satisfy all of the criteria in           |  |
| 28 |                                                                                      |         | Attachment E, "2016 Brine BACM."                                                        |  |

| 1  |                                                                                 |
|----|---------------------------------------------------------------------------------|
| 2  | ii. The APCO will determine whether the criteria for Brine BACM at any          |
| 3  | location in a brine shallow flood area are satisfied and shall inform the City  |
| 4  | of the determination in writing.                                                |
| 5  | iii. The APCO may order the City to shallow flood any Brine BACM area or        |
| 6  | any emissive portion thereof if any of the following criteria are met.          |
| 7  | 1) The APCO determines that emissive surface conditions                         |
| 8  | exist in the area as determined by the Induced Particulate                      |
| 9  | Erosion Test procedures in the TWB <sup>2</sup> Monitoring Protocol             |
| 10 | at Attachment A, SJ Attachment C; or                                            |
| 11 | 2) The APCO determines that sand flux greater than 5                            |
| 12 | g/cm2/day is measured in that area.                                             |
| 13 | 3) The APCO determines that the total surface cover of                          |
| 14 | qualifying stable brine surfaces has been reduced to less                       |
| 15 | than 60% of the areal extent of areas requiring 99% control                     |
| 16 | or more than a 10% loss of control efficiency for areas                         |
| 17 | requiring less than 99% control. The relationship between                       |
| 18 | total surface cover and control efficiency shall be                             |
| 19 | determined by the most current approved Shallow Flooding                        |
| 20 | curve. In these cases of reduced surface coverage, there                        |
| 21 | does not need to be emissive surface conditions as                              |
| 22 | determined by the Induced Particulate Erosion Test or sand                      |
| 23 | flux greater than 5 g/cm <sup>2</sup> /day.                                     |
| 24 | iv. If the APCO determines that Paragraph 9.E.iii.1, 9.E.iii.2 or 9.E.iii.3 are |
| 25 | met, the APCO will give written notice to the City that the area must meet      |
| 26 | the Shallow Flood BACM requirements for that area within 37 days.               |
| 27 | v. The City may comment upon the APCO's determination for Brine BACM            |
| 28 | areas or orders to shallow-flood an area, but shall not appeal or contest that  |
|    | determination in any administrative or judicial forum, under any law,           |
|    |                                                                                 |

| 1  |    |                                                                            |                   |                                                                |  |  |  |
|----|----|----------------------------------------------------------------------------|-------------------|----------------------------------------------------------------|--|--|--|
| 2  |    |                                                                            | statute or lega   | al theory whatsoever including Health & Safety Code Section    |  |  |  |
| 3  |    | 42316.                                                                     |                   |                                                                |  |  |  |
| 4  | F. | Dynamic Water Management. Dynamic Water Management (DWM) allows the        |                   |                                                                |  |  |  |
| 5  |    | APCO                                                                       | O to delay the st | tart dates and/or advance the end dates set forth in Paragraph |  |  |  |
| 6  |    | 1.A a:                                                                     | nd 1.B for shall  | ow flooding on non-emissive years to save water if the         |  |  |  |
| 7  |    | modif                                                                      | fication can be   | shown to have no effect on performance standards or the dust   |  |  |  |
| 8  |    | contro                                                                     | ol measure effic  | ciencies required to meet the $PM_{10}$ NAAQS.                 |  |  |  |
| 9  |    | i.                                                                         | For an area to    | o qualify for DWM, it must satisfy all of the criteria in      |  |  |  |
| 10 |    |                                                                            | Attachment F      | F, the "2016 Owens Lake Dynamic Water Management Plan."        |  |  |  |
| 11 |    | ii.                                                                        | The APCO sl       | hall determine whether the criteria for DWM are satisfied and  |  |  |  |
| 12 |    |                                                                            | shall inform t    | he City of the determination in writing. The City may          |  |  |  |
| 13 |    |                                                                            | comment upo       | on the APCO's determination, but shall not appeal or contest   |  |  |  |
| 14 |    | that determination in any administrative or judicial forum, under any law, |                   |                                                                |  |  |  |
| 15 |    |                                                                            | statute or lega   | al theory whatsoever including Health & Safety Code Section    |  |  |  |
| 16 |    |                                                                            | 42316.            |                                                                |  |  |  |
| 17 |    | iii.                                                                       | If an area is a   | pproved for DWM, the City shall comply with the following      |  |  |  |
| 18 |    |                                                                            | requirements      | :                                                              |  |  |  |
| 19 |    |                                                                            | 1)                | Each year, the area must meet shallow flood wetness targets    |  |  |  |
| 20 |    |                                                                            |                   | by or before the approved DWM start day, and may be shut       |  |  |  |
| 21 |    |                                                                            |                   | off with no spring season ramping requirements after April     |  |  |  |
| 22 |    |                                                                            |                   | 30.                                                            |  |  |  |
| 23 |    |                                                                            | 2)                | Each year, areas irrigated with sprinklers must meet shallow   |  |  |  |
| 24 |    |                                                                            |                   | flood wetness targets by or before two weeks before the        |  |  |  |
| 25 |    |                                                                            |                   | approved DWM start day, and may be shut off with no            |  |  |  |
| 26 |    |                                                                            |                   | spring ramping requirements after May 31.                      |  |  |  |
| 27 |    |                                                                            | 3)                | The APCO may order and the City is required to implement       |  |  |  |
| 28 |    |                                                                            |                   | BACM Shallow-Flooding on the DCM area or portion               |  |  |  |
|    |    |                                                                            |                   | thereof if the APCO determines that emissive surface           |  |  |  |

| 1  |    |                                                                 |
|----|----|-----------------------------------------------------------------|
| 2  |    | conditions exist in that area as determined by the Induced      |
| 3  |    | Particulate Erosion Test procedures in the TWB <sup>2</sup>     |
| 4  |    | Monitoring Protocol. In this event, the APCO will give          |
| 5  |    | notice to the City that the area must meet the wetness target   |
| 6  |    | within 15 days if the area is less than or equal to 25 percent  |
| 7  |    | of the DWM area, 21 days if the area is greater than 25         |
| 8  |    | percent of the DWM area. Sprinkler irrigated areas ordered      |
| 9  |    | by the APCO for BACM Shallow Flooding must meet the             |
| 10 |    | wetness target within 15 days regardless of the amount of       |
| 11 |    | area ordered.                                                   |
| 12 | 4) | The APCO may order and the City is required to implement        |
| 13 |    | BACM Shallow-Flooding on the DCM area or portion                |
| 14 |    | thereof if the APCO determines that sand flux greater than 5    |
| 15 |    | g/cm2/day is measured in that area. In this event, the APCO     |
| 16 |    | will give notice to the City that the area must meet the        |
| 17 |    | wetness target within 15 days if the area is less than or equal |
| 18 |    | to 25 percent of the DWM area, 21 days if the area is greater   |
| 19 |    | than 25 percent of the DWM area. Sprinkler irrigated areas      |
| 20 |    | ordered by the APCO for BACM Shallow Flooding must              |
| 21 |    | meet the wetness target within 15 days regardless of the        |
| 22 |    | amount of area ordered.                                         |
| 23 | 5) | If any DWM area or portion thereof become emissive and is       |
| 24 |    | therefore issued a reflood order by the APCO more than          |
| 25 |    | once in a continuous six-year period, these areas will revert   |
| 26 |    | to the standard shallow flood period of October 16 through      |
| 27 |    | June 30 and will no longer be eligible for DWM.                 |
| 28 | 6) | If any DWM area or portion thereof becomes emissive and         |
|    |    | is therefore issued a reflood order by the APCO less than       |

| 1  |    |                                                                                     |
|----|----|-------------------------------------------------------------------------------------|
| 2  |    | once in a continuous six-year period, that reflood order shall                      |
| 3  |    | only apply to the modified start or end period upon which                           |
| 4  |    | the area was identified for re-flooding and not to the entire                       |
| 5  |    | dust year.                                                                          |
| 6  | G. | If air quality modeling or monitoring data shows an exceedance or exceedances of    |
| 7  |    | the NAAQS or State Standard at or above the Regulatory Shoreline as a result of     |
| 8  |    | excessive dry areas within Shallow Flooding control areas during the dust control   |
| 9  |    | periods for each year and the APCO determines that existing $PM_{10}$ control       |
| 10 |    | measures require a higher level of control efficiency, the City shall increase the  |
| 11 |    | control efficiency of those measures within one month of its receipt of a written   |
| 12 |    | determination by the APCO informing the City of this determination if more water    |
| 13 |    | application is needed to overcome evapotranspiration, or within 12 months of a      |
| 14 |    | written determination if land leveling or the installation of more laterals to the  |
| 15 |    | water delivery systems are needed, and maintain that higher control efficiency      |
| 16 |    | until the APCO determines that a reduced control efficiency is appropriate. The     |
| 17 |    | City may comment upon the APCO's determination, but shall not appeal or contest     |
| 18 |    | that determination in any administrative or judicial forum, under any law, statute  |
| 19 |    | or legal theory whatsoever including Health & Safety Code Section 42316.            |
| 20 | H. | From July 1 through October 15 of each year, the District does not require the City |
| 21 |    | to apply water to Shallow Flooding areas for dust control purposes. The City shall  |
| 22 |    | comply with all other permits, conditions and requirements.                         |
| 23 | I. | Aerial photography, satellite imagery or other methods approved at the sole         |
| 24 |    | discretion of the APCO shall be used to confirm wetness coverage.                   |
| 25 | J. | The following portions of the areas designated for control with Shallow Flooding    |
| 26 |    | are exempted from the requirement of dust control by means of a saturated surface:  |
| 27 |    | i. Raised berms, roadways and their shoulders necessary to access, operate          |
| 28 |    | and maintain the control measure which are otherwise controlled and                 |
|    |    | maintained to render them substantially non-emissive and                            |

| I  |    |                                                                                           |
|----|----|-------------------------------------------------------------------------------------------|
| 2  |    | ii. Raised pads containing vaults, pumping equipment or control equipment                 |
| 3  |    | necessary for the operation of Shallow Flooding infrastructure which are                  |
| 4  |    | otherwise controlled and maintained to render them substantially non-                     |
| 5  |    | emissive.                                                                                 |
| 6  | К. | "Substantially non-emissive" shall mean that the surface is protected with gravel,        |
| 7  |    | durable pavement or other APCO-approved surface protections sufficient to meet            |
| 8  |    | the requirements of District Rules 400 and 401 (visible emissions and fugitive            |
| 9  |    | dust).                                                                                    |
| 10 | L. | Excess surface water and shallow groundwater above the annual average water               |
| 11 |    | table that existed before site construction that reach the lower boundary of the          |
| 12 |    | DCM areas will be contained, collected and recirculated for reapplication to dust         |
| 13 |    | control areas or otherwise lawfully discharged. The DCM areas shall contain               |
| 14 |    | excess waters in the control areas and isolate the dust control measure areas from        |
| 15 |    | each other and from areas not controlled by the use of lateral boundary edge berms        |
| 16 |    | and/or drains or other equally effective measures. If drains are used, they shall be      |
| 17 |    | designed and constructed so that they may be regulated such that groundwater              |
| 18 |    | levels, surface water extent and wetlands in adjacent uncontrolled areas are not          |
| 19 |    | impacted. These requirements do not apply to Shallow Flood area T36-4 because             |
| 20 |    | of to its adjacency to the Lower Owens River Project (LORP) and the City's                |
| 21 |    | intention to integrate the design and operation of T36-4 into the LORP.                   |
| 22 | М. | The City shall remove all exotic pest plants, including salt cedar (Tamarix               |
| 23 |    | ramosissima), that invade any of the areas designated for control by Shallow              |
| 24 |    | Flooding.                                                                                 |
| 25 | N. | As necessary to protect human health, the City shall prevent, avoid and/or abate          |
| 26 |    | mosquito, other pest vector and biting nuisance insect breeding and swarming              |
| 27 |    | within and in the vicinity of the $PM_{10}$ control areas where water is applied for dust |
| 28 |    | control purposes, including within communities less than three miles from those           |
|    |    | areas, by effective means that minimize adverse effects upon adjacent wildlife.           |

### 10. BACM Managed Vegetation

| A. | For all areas controlled with the Managed Vegetation BACM, the areas shall be      |
|----|------------------------------------------------------------------------------------|
|    | operated and maintained in accordance with the Managed Vegetation Operation        |
|    | and Management Plan approved by the District in Board Order #110718-04. This       |
|    | Order provides for a mix of minimum vegetation covers that mimic the cover         |
|    | distribution of existing non-emissive Managed Vegetation controls on the lakebed.  |
|    | Areas controlled with Managed Vegetation BACM shall maintain a minimum             |
|    | overall average vegetation cover of 37 percent for each contiguous Managed         |
|    | Vegetation area. The cover at any point within that area can vary from the average |
|    | as set forth in Paragraph 10.B.                                                    |

B. Areas controlled with the Managed Vegetation BACM will be considered compliant when the vegetative cover requirements in Table 10.1 are maintained on the area. Vegetative cover compliance is to be determined based on a satellite image of the area taken between September 21 and December 21 of each year. The image shall be ground-truthed, calibrated, and validated by reference to measurements made by point frame or by equivalent methods approved by the APCO. Vegetative cover provided by any approved locally adapted native plant species will count toward compliance in any Managed Vegetation area. Vegetative cover must average 37 percent. However, it is recognized that over-control in some portions of a control area can offset under-control in other areas, as long as under-controlled areas are not large enough to become emissive. Table 10.1 provides for a range of allowable covers across multi-sized grids to ensure coverage distributions are sufficient to prevent PM<sub>10</sub> emissions. 

## 

### **TABLE 10.1** Managed Vegetation BACM Vegetative Cover Criteria

| Grid  | Average | >5%   | >10%  | >20 % |
|-------|---------|-------|-------|-------|
| Scale |         | cover | cover | cover |

| 1  |      |            |                      |             |              |                |                      |           |
|----|------|------------|----------------------|-------------|--------------|----------------|----------------------|-----------|
| 2  |      | (acres)    | (minimum %<br>cover) | (minimum    | % of DCM a   | area)          |                      |           |
| 4  |      | 0.1        | 37                   | 92          | 83           | 65             | _                    |           |
| 5  |      | 1          | 37                   | 94          | 87           | 68             | -                    |           |
| 6  |      | 10         | 27                   | 05          | 00           | 74             | _                    |           |
| 7  |      | 10         | 37                   | 95          | 89           | /4             | _                    |           |
| 8  |      | 100        | 37                   | 95          | 90           | 77.            |                      |           |
| 9  |      |            |                      |             |              |                |                      |           |
| 10 | С. 7 | The vege   | tation planted for   | or dust cor | trol shall   | consist only   | of locally-adapt     | ed native |
| 11 | 1    | species a  | pproved by both      | the APC     | O and the    | California S   | tate Lands Com       | nission   |
| 12 |      | (CSLC).    | As of January 1      | , 2016, a p | olant list o | f 48 native s  | species has been     | approved. |
| 13 |      | Other app  | propriate species    | s may be a  | pproved of   | only upon w    | ritten request of t  | he City   |
| 14 | :    | and writte | en approval of the   | he APCO.    |              |                |                      |           |
| 15 | D.   | Vegetatio  | on coverage shal     | ll be meas  | ured by th   | e point-fram   | ne method, by gro    | ound-     |
| 16 | 1    | truth rem  | ote sensing or b     | y other me  | ethods app   | proved at the  | e sole discretion of | of the    |
| 17 |      | APCO.      |                      |             |              |                |                      |           |
| 18 | Е.   | The follo  | wing portions of     | f the areas | designate    | ed for contro  | ol with Managed      |           |
| 19 |      | Vegetatio  | on are exempted      | from the    | requireme    | ents set forth | in Paragraphs 10     | ).A.      |
| 20 |      | above:     |                      |             |              |                |                      |           |
| 21 | j    | i. Po      | ortions consister    | ntly inund  | ated with    | water, such    | as reservoirs, poi   | nds and   |
| 22 |      | Ca         | inals;               |             |              |                |                      |           |
| 23 | j    | ii. R      | oadways and eq       | uipment p   | ads neces    | sary to acces  | ss, operate and m    | aintain   |
| 24 |      | th         | e control measu      | re which a  | are otherw   | vise controlle | ed and maintaine     | d to      |
| 25 |      | re         | nder them subst      | tantially n | on-emissi    | ve; and        |                      |           |
| 26 | i    | iii. Po    | ortions used as f    | loodwater   | diversior    | n channels or  | r desiltation/reter  | ition     |
| 27 |      | ba         | asins.               |             |              |                |                      |           |
| 28 | F.   | "Substan   | tially non-emiss     | ive" shall  | be define    | d to mean th   | at the surface is    | protected |
|    |      | with grav  | el, durable pave     | ement or o  | ther APC     | O-approved     | surface protectio    | ns        |
|    |      |            |                      |             |              |                |                      |           |

| 1  |    |                                                                                             |
|----|----|---------------------------------------------------------------------------------------------|
| 2  |    | sufficient to meet the requirements of District Rules 400 and 401 (visible                  |
| 3  |    | emissions and fugitive dust).                                                               |
| 4  | G. | Excess surface water and shallow groundwater above the root zone depths that                |
| 5  |    | reach the lower boundary of the dust control areas shall be collected and                   |
| 6  |    | recirculated for reapplication to dust control areas or otherwise lawfully                  |
| 7  |    | discharged. The DCM areas shall contain excess waters in the control areas and              |
| 8  |    | isolate the dust control measure areas from each other and from areas not                   |
| 9  |    | controlled by the use of lateral boundary edge berms and/or drains or other equally         |
| 10 |    | effective measures. Drains shall be designed and constructed so that they may be            |
| 11 |    | regulated such that groundwater levels, surface water extent and wetlands in                |
| 12 |    | adjacent uncontrolled areas are not impacted.                                               |
| 13 | Н. | To protect the Managed Vegetation control measure from flood damage and                     |
| 14 |    | alluvial deposition, the City shall incorporate stormwater and siltation control            |
| 15 |    | facilities into and around Managed Vegetation areas adequate to maintain the dust           |
| 16 |    | mitigation function of Managed Vegetation. The Managed Vegetation protection                |
| 17 |    | facilities shall be designed to dissipate flood waters and capture the alluvial             |
| 18 |    | material carried by flood waters, so as to avoid greater than normal water flows            |
| 19 |    | and deposition of alluvial material into the Owens Lake brine pool.                         |
| 20 | I. | The City shall remove all exotic pest plants, including salt cedar (Tamarix spp.),          |
| 21 |    | that invade any of the areas designated for control by Managed Vegetation.                  |
| 22 | J. | As necessary to protect human health, the City shall prevent, avoid and/or abate            |
| 23 |    | mosquito, other pest vector and biting nuisance insect breeding and swarming                |
| 24 |    | within and in the vicinity of the $PM_{10}$ control areas where water is applied for dust   |
| 25 |    | control purposes, including within communities less than three miles from those             |
| 26 |    | areas, by effective means that minimize adverse effects upon adjacent wildlife.             |
| 27 | К. | If air quality modeled or monitoring data shows an exceedance or exceedances of             |
| 28 |    | the $PM_{10}$ NAAQS at or above the Regulatory Shoreline as a result of emissions           |
|    |    | from bare or vegetated areas and the APCO determines that existing PM <sub>10</sub> control |

| 1  |     |      |                                                                                        |
|----|-----|------|----------------------------------------------------------------------------------------|
| 2  |     |      | measures require a higher level of control efficiency, the City shall increase the     |
| 3  |     |      | control efficiency of those measures upon written determination by the APCO            |
| 4  |     |      | informing the City of this determination within 36 months by enhancing, restoring      |
| 5  |     |      | or establishing necessary vegetation coverage or within1 to 6 months to stabilize      |
| 6  |     |      | areas by other means. The City may comment upon the APCO's determination,              |
| 7  |     |      | but shall not appeal or contest that determination in any administrative or judicial   |
| 8  |     |      | forum, under any law, statute or legal theory whatsoever including Health &            |
| 9  |     |      | Safety Code Section 42316.                                                             |
| 10 | 11. | BACM | <u> A Gravel Blanket</u>                                                               |
| 11 |     | A.   | In areas where Gravel Blanket is used as a $PM_{10}$ control measure, the City shall   |
| 12 |     |      | meet one of the following two performance standards:                                   |
| 13 |     |      | i. The entire control area shall be covered with a layer of gravel at least four       |
| 14 |     |      | inches thick. All gravel material placed must be screened to a size greater            |
| 15 |     |      | than one-half inch ( $\frac{1}{2}$ inch) in diameter. Where it is necessary to support |
| 16 |     |      | the gravel blanket, it shall be placed over a permanent permeable geotextile           |
| 17 |     |      | fabric; or                                                                             |
| 18 |     |      | ii. The entire control area shall be covered with a layer of gravel at least two       |
| 19 |     |      | inches thick underlain with a permanent permeable geotextile fabric. All               |
| 20 |     |      | gravel material placed must be screened to a size greater than one-half inch           |
| 21 |     |      | $(\frac{1}{2} \text{ inch})$ in diameter.                                              |
| 22 |     | В.   | All gravel shall be durable have resistance to leaching and erosion. It shall be as    |
| 23 |     |      | durable and no more toxic than the gravel from the Keeler fan site analyzed by the     |
| 24 |     |      | District in the Final Environmental Report prepared for the 1997 SIP and comply        |
| 25 |     |      | with all other permits, conditions and requirements.                                   |
| 26 |     | C.   | All geotextile fabric used under Gravel Blanket BACM shall be Class I woven or         |
| 27 |     |      | nonwoven geotextile fabric meeting the minimum specifications set forth in the         |
| 28 |     |      | National Standard Materials Specification "Material Specification 592—                 |

| 1  |    |                                                                                       |
|----|----|---------------------------------------------------------------------------------------|
| 2  |    | Geotextile" (National Engineering Handbook, Chapter 3, Part 642), or equivalent       |
| 3  |    | as approved by the APCO.                                                              |
| 4  | D. | To protect the Gravel Blanket control measure from flooding, the City shall           |
| 5  |    | incorporate drains and channels into and around the control measure areas             |
| 6  |    | adequate to maintain the dust mitigation function of the Gravel Blanket, and outlet   |
| 7  |    | flood waters into the Owens Lake brine pool, Shallow Flooding areas, or               |
| 8  |    | reservoirs. The drains and channels shall be designed to incorporate features such    |
| 9  |    | as desiltation or retention basins that are adequate to capture the alluvial material |
| 10 |    | carried by the flood waters and to avoid greater than normal deposition of this       |
| 11 |    | material into the Owens Lake brine pool.                                              |
| 12 | E. | The gravel placement design and implementation shall adequately protect the           |
| 13 |    | graveled areas from the deposition of wind- and water-borne soil, settling of gravel  |
| 14 |    | into lakebed sediments or infiltration of sediments from below. All graveled areas    |
| 15 |    | will be visually monitored by the City at least annually to ensure that the Gravel    |
| 16 |    | Blanket is not filled with sand, dust or salt and that it has not been inundated or   |
| 17 |    | washed out from flooding. If any of these conditions are observed over areas larger   |
| 18 |    | than one acre, additional gravel will be transported by the City to the playa and     |
| 19 |    | applied to the playa surface such that the original performance standard is re-       |
| 20 |    | established within four months per square mile of gravel cover, or within thirty-six  |
| 21 |    | months per square mile of gravel cover if replaced by different BACM (such as         |
| 22 |    | shallow flooding or managed vegetation), of written notice from the APCO. The         |
| 23 |    | City may comment upon the APCO's determination, but shall not appeal or contest       |
| 24 |    | that determination in any administrative or judicial forum, under any law, statute    |
| 25 |    | or legal theory whatsoever including Health & Safety Code Section 42316.              |
| 26 | F. | The City shall apply BACM for fugitive dust sources (see WRAP Fugitive Dust           |
| 27 |    | Handbook, Western Governors' Association, 2006) and New Source Performance            |
| 28 |    | Standard (NSPS) emission limits to its gravel mining and transportation activities    |

| 1  |                                                                                              |
|----|----------------------------------------------------------------------------------------------|
| 2  | occurring within the District's geographic boundaries as required by the District in         |
| 3  | the City's District-issued Authority to Construct and Permit to Operate.                     |
| 4  | 12. MDCE BACM Control Measures                                                               |
| 5  | A. As referenced in Paragraph 1, the T1A-1 sand fence (0.39 square miles) and                |
| 6  | Channel Area (0.5 square miles) PM <sub>10</sub> control measures are currently dust control |
| 7  | areas with MDCE BACM in operation. For these dust control areas only, MDCE                   |
| 8  | BACM will continue to be operated to meet the required MDCE performance                      |
| 9  | standards shown in Exhibit 2.                                                                |
| 10 | B. For areas of MDCE BACM that do not meet the MDCE performance standards or                 |
| 11 | that cause or contribute to an exceedance of the federal 24-hour $PM_{10}$ NAAQS or          |
| 12 | State Standard, as solely determined by the APCO using monitoring or an                      |
| 13 | approved model, the City shall increase the control efficiency of those measures as          |
| 14 | directed by the APCO in writing to meet the performance standards of the                     |
| 15 | approved BACM. The APCO's determination shall specify the increase in control                |
| 16 | efficiency required and the time allowed for such increase. The City may comment             |
| 17 | upon the APCO's determination, but shall not appeal or contest that determination            |
| 18 | in any administrative or judicial forum, under any law, statute or legal theory              |
| 19 | whatsoever including Health & Safety Code Section 42316.                                     |
| 20 | NEW BACM, ADJUSTMENTS TO EXISTING BACM, AND BACM TRANSITIONS.                                |
| 21 | 13. Upon written request by the City, the District may approve new BACM, a modification or   |
| 22 | adjustment to the existing BACMs described in Paragraphs 9, 10, 11 and 12 of this Order,     |
| 23 | and/or the transition from one BACM to another provided that, at all times, the              |
| 24 | performance standards of one or the other BACM are continuously met during the               |
| 25 | transition to assure that the transition shall not prevent the OVPA from attaining or        |
| 26 | maintaining the NAAQS or State Standard for PM10. The City's request shall contain a         |
| 27 | detailed description of the proposed alternative and a demonstration that the request        |
| 28 | satisfied all requirements of law and this Order.                                            |

| А. | The APCO shall have full discretion to consider any such application for a change            |
|----|----------------------------------------------------------------------------------------------|
|    | in BACM, and to accept, reject or condition its approval of such application. Non-           |
|    | compliance with any such condition shall be enforceable as noncompliance with a              |
|    | District Order. Without limiting the District's discretion as provided herein, the           |
|    | procedures for transitions of implemented control measures or adjustments to                 |
|    | BACM shall be those described in Attachment D, "2016 Procedure for Modifying                 |
|    | Best Available Control Measures (BACM) for the Owens Valley Planning Area."                  |
| В. | The District will review new or refined dust control measures proposed by the                |
|    | City, and will approve a measure as BACM if the District determines that the                 |
|    | measure is consistent with the EPA's interpretation of the term Best Available               |
|    | Control Measure under the federal Clean Air Act and its implementation as                    |
|    | required for the Owens Valley nonattainment area. In assessing whether a dust                |
|    | control measure (including a new measure or extension of a previously identified             |
|    | measure to a new area) is BACM, the District will consider the technological                 |
|    | feasibility of the measure, as well as energy, environmental, and economic impacts           |
|    | and other costs.                                                                             |
| C. | If the City wishes to transition from one existing BACM to another BACM                      |
|    | without meeting the performance standards of either BACM at all times, the                   |
|    | Transition Area project size shall be limited to a maximum size of 3.0 square-               |
|    | miles at one time as provided for in Attachment D, "2016 Procedure for Modifying             |
|    | Best Available Control Measures (BACM) for the Owens Valley Planning Area."                  |
|    | The 3.0 square mile Transition Area limit shall be in addition to the TWB <sup>2</sup> Areas |
|    | implemented by the City.                                                                     |
| D. | The City shall control emissions during Transition Area project construction                 |
|    | periods as provided in Attachment D, the "2016 Procedure for Modifying Best                  |
|    | Available Control Measures (BACM) for the Owens Valley Planning Area" at                     |
|    | Section 3.                                                                                   |
|    | A.<br>B.<br>D.                                                                               |

| 1  |             |                                                                                                      |
|----|-------------|------------------------------------------------------------------------------------------------------|
| 2  |             | E. The City shall only conduct construction of any Transition Area project between                   |
| 3  |             | July 1 of year when on-site work on the project begins, through December 31 of                       |
| 4  |             | the next year when all such work shall be completed and the new controls shall be                    |
| 5  |             | fully installed and operational. The completion deadline set forth in this paragraph                 |
| 6  |             | is subject to the Force Majeure and Stipulated Penalties provisions set forth in                     |
| 7  |             | Paragraphs 16 and 17.                                                                                |
| 8  | MON         | ITORING                                                                                              |
| 9  | 14.         | The District may locate PM <sub>10</sub> air monitors on City-occupied or unoccupied property in     |
| 10 |             | communities located in the OVPA at the District's sole discretion. The City shall provide            |
| 11 |             | electric power to those monitors if such power source is under the City's control and shall          |
| 12 |             | not interfere with the operation of those monitors, cut off their power supply (except for           |
| 13 |             | planned or emergency system outages), or take any other action to evict or remove the                |
| 14 |             | monitors.                                                                                            |
| 15 | <u>STOR</u> | RMWATER MANAGEMENT                                                                                   |
| 16 | 15.         | The City shall design, install, continually operate and maintain flood and siltation control         |
| 17 |             | facilities to protect the all $PM_{10}$ control measures installed on the lake bed at all times, and |
| 18 |             | in a manner that groundwater levels, surface water extent, and wetlands in adjacent                  |
| 19 |             | uncontrolled areas are not impacted by induced drainage.                                             |
| 20 |             | A. Flood and siltation control facilities shall be integrated into the design and                    |
| 21 |             | operation of the $PM_{10}$ control measures. All flood and siltation control facilities              |
| 22 |             | and $PM_{10}$ control measures damaged by stormwater runoff or flooding shall be                     |
| 23 |             | promptly repaired and restored to their designed level of protection and                             |
| 24 |             | effectiveness.                                                                                       |
| 25 |             | B. All flood and siltation control facilities shall be designed and operated in a manner             |
| 26 |             | to prevent any greater threat of alluvial material contamination to the existing                     |
| 27 |             | trona mineral deposit lease area (State Lands Commission leases PRC 5464.1,                          |
| 28 |             | PRC 3511 and PRC 2969.1) than would have occurred under natural conditions                           |
|    |             | prior to the installation of $PM_{10}$ control measures.                                             |

## FORCE MAJEURE

### 16. Force Majeure

| 4  | А. | "Force Majeure" as used in the paragraphs above relating to the Phase 9/10 project    |
|----|----|---------------------------------------------------------------------------------------|
| 5  |    | (Paragraph 3.A), BACM Contingency Measure projects (Paragraph 8.H), and               |
| 6  |    | Transition Area projects (Paragraph 13.E), is defined as one of the following         |
| 7  |    | events that prevents the City's performance of the specified act by the deadline set  |
| 8  |    | forth in that Paragraph: (i) any act of God, war, fire, earthquake, windstorm,        |
| 9  |    | flood, severe drought that is declared as an official state of emergency by the       |
| 10 |    | Governor of the State of California, or natural catastrophe; (ii) unexpected and      |
| 11 |    | unintended accidents (excluding those caused by the City or the negligence of its     |
| 12 |    | agents or employees); civil disturbance, vandalism, sabotage or terrorism; (iii)      |
| 13 |    | restraint by court order or public authority or agency; (iv) action or non-action by, |
| 14 |    | or inability to obtain the necessary authorizations or approvals from any             |
| 15 |    | governmental agency, provided that the City demonstrates it has made a timely         |
| 16 |    | and complete application to the agency and used its best efforts to obtain that       |
| 17 |    | approval, or (v) the inability to obtain private property owner access, provided that |
| 18 |    | the City demonstrates it has made a timely and complete request to the owner, and     |
| 19 |    | used its best efforts to obtain that access. Force Majeure shall not include normal   |
| 20 |    | inclement weather, other asserted shortages of water, economic hardship or            |
| 21 |    | inability to pay.                                                                     |

B. The City's performance of its duties under Paragraph 16.A will be temporarily postponed only during the condition of Force Majeure, but not excused, and the City will continue to be responsible to recommence performance of its actions to comply with the deadlines at the end of the Force Majeure event. The deadlines for performance shall automatically be extended by the period of interruption caused by the Force Majeure event. The City shall exercise due diligence to resolve and

|     |                | remove any Force Majeure event. Nothing in this paragraph shall be interpreted to                          |
|-----|----------------|------------------------------------------------------------------------------------------------------------|
|     |                | relieve the City of its obligations and duties under all applicable laws.                                  |
|     | C.             | Any party seeking to rely upon this paragraph to excuse or postpone performance                            |
|     |                | under Paragraph 16.A shall have the burden of establishing each of these elements                          |
|     |                | to the Sacramento Superior Court with jurisdiction over the 2014 Stipulated                                |
|     |                | Judgment in the case captioned City of Los Angeles v. California Air Resources                             |
|     |                | Board et al., Case No. 34-2013-80001451-CU-WM-GDS, and that it could not                                   |
|     |                | reasonably have been expected to avoid the event or circumstance, and which by                             |
|     |                | exercise of due diligence has been unable to overcome the failure of performance.                          |
| 17. | <u>Stipula</u> | ated Penalties                                                                                             |
|     | A.             | The City shall be subject to notices of violation from the APCO and stipulated                             |
|     |                | daily penalties for failure to meet dust control measure construction completion                           |
|     |                | deadlines set forth in this Stipulated Judgment for the Phase 9/10 project                                 |
|     |                | (Paragraph 3.A), BACM Contingency Measure projects (Paragraph 8.H), and                                    |
|     |                | Transition Area projects (Paragraph 13.E), except as excused by a condition of                             |
|     |                | Force Majeure as defined in Paragraph 16.A. The amount of the daily penalty shall                          |
|     |                | be determined by the following formula:                                                                    |
|     |                | Stipulated daily penalty $(\text{A}/\text{day}) = \text{Provide} 10,000 - \text{Provide} 4500 (A_C/A_R)$ , |
|     |                | where                                                                                                      |
|     |                | $A_C$ = Dust control area required by the APCO that is completed and                                       |
|     |                | compliant (square miles), and                                                                              |
|     |                | $A_R$ = Total dust control area required by the APCO (square miles).                                       |
|     | B.             | The City shall pay any stipulated daily penalties within 90 days of any notice of                          |
|     |                | violation from the APCO for failure to meet these deadlines. The City shall not                            |
|     |                | challenge or oppose its duty to pay the stipulated daily penalty in any                                    |
|     |                | administrative or judicial forum, under any law, statute or legal theory whatsoever                        |
|     |                | including Health & Safety Code Section 42316(b).                                                           |
|     | 17.            | C.<br>17. <u>Stipula</u><br>A.<br>B.                                                                       |

| 1  |                         |         |                                                                                      |
|----|-------------------------|---------|--------------------------------------------------------------------------------------|
| 2  |                         | C.      | This Paragraph 17 applies only to the failure to meet dust control measure           |
| 3  |                         |         | completion deadlines as set forth in Paragraph 16.A and does not apply to any        |
| 4  |                         |         | other notice of violation or enforcement of laws by the District or its APCO.        |
| 5  | PERF                    | ORMA    | NCE MONITORING PLAN                                                                  |
| 6  | 18.                     | The C   | ity, in consultation with the District, shall develop and provide to the District in |
| 7  |                         | writing | g a Performance Monitoring Plan (PMP) to aid in its operation of the Owens Lake      |
| 8  |                         | dust m  | nitigation program on the Owens Lake bed.                                            |
| 9  |                         | А.      | The PMP shall describe the measurements and methods used to verify the               |
| 10 |                         |         | performance of the constructed dust control measures. The PMP shall also             |
| 11 |                         |         | describe the measurements and methods used to maximize information on dust           |
| 12 |                         |         | emissions from any areas of special interest. The PMP shall require the City to      |
| 13 |                         |         | make an annual report to the District regarding the measurements and methods         |
| 14 |                         |         | used to verify the performance of the constructed dust control measures.             |
| 15 |                         | В.      | The City shall implement the PMP, and will use the results as a guide for making     |
| 16 |                         |         | operational decisions about the type, location, timing, and level of dust control    |
| 17 |                         |         | measures needed to comply with this Order.                                           |
| 18 |                         | C.      | The PMP report for each calendar year shall be submitted to the APCO by March        |
| 19 |                         |         | 31 of the following calendar year.                                                   |
| 20 | ADDITIONAL REQUIREMENTS |         |                                                                                      |
| 21 | 19.                     | The D   | istrict Board orders the City of Los Angeles to satisfy the following requirements   |
| 22 |                         | related | to all control measures:                                                             |
| 23 |                         | А.      | The City's construction, operation and maintenance activities shall comply with all  |
| 24 |                         |         | Mitigation Measures set forth in Final Environmental Impact Reports, EIR             |
| 25 |                         |         | Addendums and Mitigated Negative Declarations associated with the areas on           |
| 26 |                         |         | which dust controls are placed, and all subsequent environmental documents           |
| 27 |                         |         | adopted by the District for implementation of the requirements of this SIP.          |
| 28 |                         | B.      | The City shall comply with any and all applicable requirements of the Mitigation     |
|    |                         |         | Monitoring and Reporting Programs adopted by the District as a lead or               |
|    |                         |         |                                                                                      |

| 1  |                                                                                                 |
|----|-------------------------------------------------------------------------------------------------|
| 2  | responsible agency and associated with the Final Environmental Impact Reports                   |
| 3  | and Final Environmental Impact Report Addendums for this project, and with all                  |
| 4  | subsequent environmental documents adopted by the District for implementation                   |
| 5  | of the requirements of this SIP. All mitigation measures required in certified                  |
| 6  | environmental documents associated with the implementation, operation and                       |
| 7  | maintenance of $PM_{10}$ control measures required by this order are hereby                     |
| 8  | incorporated as requirements of this order and may be enforced as such.                         |
| 9  | C. The City shall apply BACM to control air emissions from its                                  |
| 10 | construction/implementation activities occurring in the District's geographic                   |
| 11 | boundaries. This provision applies to any activities that may emit air pollution and            |
| 12 | are associated with dust control projects at Owens Lake such as gravel mining,                  |
| 13 | cement and asphalt plants, or construction activities. These operations could take              |
| 14 | place outside of the Owens Valley Planning Area, e.g. in the City of Bishop.                    |
| 15 | BACMs appropriate for these activities have and will continue to be included as                 |
| 16 | conditions on District-issued permits to operate.                                               |
| 17 | RETENTION OF LEGAL AUTHORITY                                                                    |
| 18 | 20. If there is a change in federal or state law that requires controls in addition to those    |
| 19 | provided in this Order, then the District shall maintain its authority under Health & Safety    |
| 20 | Code Section 42316 to adopt a new order to require the City to comply with these new            |
| 21 | legal requirements. The District shall also maintain its authority under Health & Safety        |
| 22 | Code Section 42316 to order the City to control additional sources of air pollution and/or      |
| 23 | to undertake additional reasonable measures necessary to mitigate the air pollution caused      |
| 24 | in the District by the City's water-gathering activities for other areas, sources or activities |
| 25 | that are not specifically addressed in Paragraphs 1 through 8 of this Order, or that are        |
| 26 | located outside of the Keeler, Olancha and Swansea dune areas as specified in Board             |
| 27 | Order #130916-01.                                                                               |
| 28 |                                                                                                 |

| 1  |             |                                                                                          |                                                                                            |  |
|----|-------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|
| 2  | <u>RELA</u> | TIONS                                                                                    | HIP TO BOARD ORDER 080128-01 AND STIPULATED JUDGMENT                                       |  |
| 3  | 21.         | This Board Order consists of the 2008 SIP Order as modified by the 2013 SIP              |                                                                                            |  |
| 4  |             | Amen                                                                                     | dment and the Stipulated Judgment. The Stipulated Judgment is attached hereto as           |  |
| 5  |             | Attachment A, and its terms are incorporated into this Board Order as if fully set forth |                                                                                            |  |
| 6  |             | herein                                                                                   |                                                                                            |  |
| 7  |             | A.                                                                                       | The City shall support and not challenge the adoption of this 2016 SIP Order by            |  |
| 8  |             |                                                                                          | the District Governing Board, CARB and EPA, except that the City may challenge             |  |
| 9  |             |                                                                                          | any new term that the City has not agreed to in advance, and that is not contained         |  |
| 10 |             |                                                                                          | in the 2008 SIP order as modified by the 2013 Amendment and the Stipulated                 |  |
| 11 |             |                                                                                          | Judgment.                                                                                  |  |
| 12 |             | B.                                                                                       | Except as provided in Paragraph 21.A, the City shall not appeal or contest this            |  |
| 13 |             |                                                                                          | Board Order now or in the future in any administrative or judicial forum, under            |  |
| 14 |             |                                                                                          | any law, statute or legal theory whatsoever including CEQA or Health & Safety              |  |
| 15 |             |                                                                                          | Code Section 42316, and has agreed that its terms are valid and reasonable under           |  |
| 16 |             |                                                                                          | Health & Safety Code Section 42316.                                                        |  |
| 17 | 22.         | The D                                                                                    | istrict hereby stays the force and effect of Board Order #080128-01 for all times that     |  |
| 18 |             | this O                                                                                   | rder is in full force and effect. In the event this Order, or any provision of this Order, |  |
| 19 |             | is stay                                                                                  | red due to a legal challenge, including but not limited to a challenge to this Order       |  |
| 20 |             | under                                                                                    | Health & Safety Code Section 42316, or any other law, to the State Implementation          |  |
| 21 |             | Plan, o                                                                                  | or to the Environmental Impact Report for this Revised SIP, or in the event the            |  |
| 22 |             | Order                                                                                    | is disapproved by the CARB, the following shall apply:                                     |  |
| 23 |             | A.                                                                                       | The City shall continue to construct, operate and maintain all control measures            |  |
| 24 |             |                                                                                          | implemented under the Stipulated Judgment, including but not limited to those              |  |
| 25 |             |                                                                                          | measures implemented or required for implementation on 48.6 square miles as                |  |
| 26 |             |                                                                                          | specified in Paragraphs 1 through 5, and 9 of this Order, without interruption.            |  |
| 27 |             | В.                                                                                       | Board Order #080128-01 shall immediately be in effect and shall remain in full             |  |
| 28 |             |                                                                                          | force for the duration of any stay or, in the case of disapproval, until another Order     |  |
|    |             |                                                                                          | is issued by this Board. The Stipulated Judgment shall also remain in effect. The          |  |
|    |             |                                                                                          |                                                                                            |  |

1 City shall not challenge the provisions of this Board Order or the Stipulated 2 Judgment now or in the future in any administrative or judicial forum, under any 3 law, statute or legal theory whatsoever including Health & Safety Code Section 4 42316. 5 23. EFFECTIVE DATE 6 The effective date of this Board Order shall be April 13, 2016. 7 8 APPROVED, ADOPTED and ORDERED by Governing Board of the Great Basin Unified Air 9 Pollution Control District this 13th day of April 2016 by the following vote: 10 11 12 Yes: Kingsley, Griffiths, Stump, Hames, Rawson 13 14 No: 0 15 16 Abstain: 0 17 Absent: Bacon, Johnston 18 **Approved:** 19 20 21 Matt KingsleyChair of the Governing Board 22 23 Attest: 24 25 26 Tori DeHaven, Clerk of the Governing Board 27 28 /////

Board Order #160413-01

Page 32 of 33

| 1  |                    |                                                                     |
|----|--------------------|---------------------------------------------------------------------|
| 2  | <u>Exhibits</u>    |                                                                     |
| 3  | Exhibit 1          | Map and Coordinates of PM <sub>10</sub> Control Areas               |
| 4  | Exhibit 2          | Minimum Dust Control Efficiency Map                                 |
| 5  | Exhibit 3          | Shallow Flood Control Efficiency Curve                              |
| 6  | Exhibit 4          | 2016 Dynamic Water Management Areas                                 |
| 7  |                    |                                                                     |
| 8  | <u>Attachments</u> |                                                                     |
| 9  | Attachment A       | Stipulated Judgment (SJ)                                            |
| 10 |                    | SJ Attachment A – Court Final Ruling and Order                      |
| 11 |                    | SJ Attachment B – TwB2 Operations Protocol                          |
| 12 |                    | SJ Attachment C – TwB2 Monitoring Protocol.                         |
| 13 | Attachment B       | 2016 Owens Valley Planning Area Additional BACM Contingency         |
| 14 |                    | Measures Determination Procedure                                    |
| 15 | Attachment C       | 2016 Owens Lake Dust Source Identification Program Protocol         |
| 16 | Attachment D       | 2016 Procedure for Modifying Best Available Control Measures (BACM) |
| 17 |                    | for the Owens Valley Planning Area                                  |
| 18 | Attachment E       | 2016 Brine BACM                                                     |
| 19 | Attachment F       | 2016 Owens Lake Dynamic Water Management Plan                       |
| 20 |                    |                                                                     |
| 21 |                    |                                                                     |
| 22 |                    |                                                                     |
| 23 |                    |                                                                     |
| 24 |                    |                                                                     |
| 25 |                    |                                                                     |
| 26 |                    |                                                                     |
| 27 |                    |                                                                     |
| 28 |                    |                                                                     |
|    |                    |                                                                     |



2/4/2016 3:02:21 PM

| 2003 Dust Control Area |                 |             |              |
|------------------------|-----------------|-------------|--------------|
| Area ID                | Area (sq miles) | UTM X       | UTM Y        |
| Corridor 1             | 0.14            | 411375.0392 | 4043915.7480 |
|                        |                 | 411368.8821 | 4043685.0145 |
|                        |                 | 411326.8256 | 4042108.9708 |
|                        |                 | 411411.9449 | 4041944.4412 |
|                        |                 | 411404.1637 | 4041882.1942 |
|                        |                 | 411328.7980 | 4041911.0091 |
|                        |                 | 411307.5628 | 4041894.7186 |
|                        |                 | 411206.9290 | 4042044.9075 |
|                        |                 | 411237.3205 | 4043740.6607 |
|                        |                 | 411250.0279 | 404449.6939  |
|                        |                 | 411252.3971 | 4044581.8872 |
|                        |                 | 411297.8028 | 4044632.7570 |
|                        |                 | 411393.9218 | 4044623.3657 |
|                        |                 | 411375.0392 | 4043915.7480 |
| T1-1                   | 0.24            | 410001.3479 | 4023280.2990 |
|                        |                 | 410002.3580 | 4023206.9595 |
|                        |                 | 410005.2363 | 4022997.9711 |
|                        |                 | 409150.1396 | 4022999.8884 |
|                        |                 | 408999.6293 | 4023000.2258 |
|                        |                 | 409002.0721 | 4023249.9209 |
|                        |                 | 409002.6986 | 4023313.7804 |
|                        |                 | 409007.7806 | 4023833.1024 |
|                        |                 | 409051.0269 | 4023839.2045 |
|                        |                 | 409110.9082 | 4023908.2518 |
|                        |                 | 409130.6312 | 4023981.8092 |
|                        |                 | 409555.1195 | 4023595.2654 |
|                        |                 | 409806.6814 | 4023351.0115 |
|                        |                 | 410001.3479 | 4023280.2990 |
| T2-1                   | 0.52            | 411579.3994 | 4020095.6486 |
|                        |                 | 411149.7636 | 4019542.1549 |
|                        |                 | 410360.7181 | 4019008.5005 |
|                        |                 | 410025.1591 | 4019002.0354 |
|                        |                 | 410021.5195 | 4020289.5251 |
|                        |                 | 410764.8535 | 4020543.1808 |
|                        |                 | 410856.3054 | 4019986.9090 |
|                        |                 | 411246.3282 | 4020045.5553 |
|                        |                 | 411579.3994 | 4020095.6486 |
| T2-2                   | 0.21            | 410764.8535 | 4020543.1808 |
|                        | 0.21            | 410021.5195 | 4020289.5251 |
|                        |                 | 410015.7153 | 4020454.4270 |
|                        |                 | 410264.9378 | 4020620.1863 |
|                        |                 | 410488.7112 | 4020946.6551 |
|                        |                 | 410592.4067 | 4021145.4323 |
|                        |                 | 410686.3969 | 4021329.2488 |
|                        |                 | 410604.9139 | 4021412.4751 |
|                        |                 | 410723 1430 | 4021595 2150 |
|                        |                 | 410775 1587 | 4021601 6591 |
|                        | I               | 410775.1507 | 4021001.0331 |

# Exhibit 1 - PM10 Control Areas and Coordinates

| 2003 Dust Control Area |                 |             |              |
|------------------------|-----------------|-------------|--------------|
| Area ID                | Area (sq miles) | UTM X       | UTM Y        |
|                        |                 | 411171.1912 | 4021661.1653 |
|                        |                 | 410911.0799 | 4021031.0051 |
|                        |                 | 410750.1808 | 4020640.9787 |
|                        |                 | 410764.8535 | 4020543.1808 |
| T2-3                   | 0.12            | 411802.8532 | 4021756.0718 |
|                        |                 | 411753.6515 | 4021748.6529 |
|                        |                 | 411604.4684 | 4021726.2842 |
|                        |                 | 411449.4651 | 4021702.9848 |
|                        |                 | 411171.1912 | 4021661.1653 |
|                        |                 | 410775.1587 | 4021601.6591 |
|                        |                 | 410723.1430 | 4021595.2150 |
|                        |                 | 410772.2220 | 4021661.6656 |
|                        |                 | 410794.5608 | 4021690.3326 |
|                        |                 | 411069.6619 | 4022043.1456 |
|                        |                 | 411468.7821 | 4021898.4334 |
|                        |                 | 412090.5723 | 4022145.4802 |
|                        |                 | 412041.9403 | 4022079.6438 |
|                        |                 | 411848.2994 | 4021817.5154 |
|                        |                 | 411802.8532 | 4021756.0718 |
| T2-4                   | 0.28            | 412520.0138 | 4022726.6285 |
|                        |                 | 412280.9151 | 4022403.1215 |
|                        |                 | 412090.5723 | 4022145.4802 |
|                        |                 | 411468.7821 | 4021898.4334 |
|                        |                 | 411069.6619 | 4022043.1456 |
|                        |                 | 411151.2016 | 4022147.9844 |
|                        |                 | 411290.0657 | 4022321.4651 |
|                        |                 | 411421.1708 | 4022347.8283 |
|                        |                 | 411641.2736 | 4022435.1011 |
|                        |                 | 411645.2720 | 4022735.1098 |
|                        |                 | 411702.1375 | 4022877.2132 |
|                        |                 | 412105.0647 | 4022841.9370 |
|                        |                 | 412196.4642 | 4022965.6545 |
|                        |                 | 412264.8371 | 4022915.1168 |
|                        |                 | 412292.7693 | 4022894.4741 |
|                        |                 | 412520.0138 | 4022726.6285 |
| T2-5                   | 0.10            | 412196.4642 | 4022965.6545 |
|                        | 0.20            | 412105.0647 | 4022841.9370 |
|                        |                 | 411702.1375 | 4022877.2132 |
|                        |                 | 411780.3515 | 4023076.2456 |
|                        |                 | 411853.5786 | 4023178.4492 |
|                        |                 | 411898.3534 | 4023239.0517 |
|                        |                 | 412114 1288 | 4023531.1972 |
|                        |                 | 412159.2499 | 4023493.2116 |
|                        |                 | 412237 2383 | 4023435 6152 |
|                        |                 | 412435.5486 | 4023289.1826 |
|                        |                 | 412327 9694 | 4023143 6398 |
|                        |                 | 412269 0657 | 4023143.0330 |
| I                      | 1               | 712203.0037 | +023003.3330 |

# Exhibit 1 - PM10 Control Areas and Coordinates
#### 2003 Dust Control Area Area (sq miles) Area ID UTM X UTM Y 412196.4642 4022965.6545 T3NE 0.24 413088.6035 4022306.4585 412849.6316 4021982.9620 412928.1826 4021923.8598 411802.8532 4021756.0718 411848.2994 4021817.5154 412041.9403 4022079.6438 412090.5723 4022145.4802 412280.9151 4022403.1215 412520.0138 4022726.6285 412843.4972 4022487.5883 413088.6035 4022306.4585 T3SE 0.49 413055.0876 4021078.5086 413074.9993 4020946.8083 413096.9447 4020800.0171 412857.9724 4020476.5179 412534.5267 4020715.4819 412270.9733 4020910.1986 411937.4110 4020860.1271 411802.8532 4021756.0718 412928.1826 4021923.8598

0.12

0.61

413012.4600

413055.0876

412857.9724

412906.4567

413034.4897

413216.5995

413090.0414

413082.4137

412973.9179

412756.6975

412608.0432

412389.2662

412281.9783

412270.9733

412534.5267

412857.9724

411937.4110

411952.8142

411890.5687

411835.6901

411644.0866 411579.3994

411246.3282 410856.3054

410764.8535

410750.1808

4021362.4643

4021078.5086

4020476.5179

4020440.6744

4020346.0780

4020220.4049

4020217.8291

4020077.9380

4020085.6761

4020031.3975

4020197.5292

4020442.0285

4020866.6437

4020910.1986

4020715.4819

4020476.5179

4020860.1271

4020757.8941

4020548.9971

4020364.6351 4020105.5040

4020095.6486 4020045.5553

4019986.9090

4020543.1808

4020640.9787

#### Exhibit 1 - PM10 Control Areas and Coordinates

T3SW

**T3SE Addition** 

| 2003 Dust Control Area |                 |             |              |
|------------------------|-----------------|-------------|--------------|
| Area ID                | Area (sq miles) | UTM X       | UTM Y        |
|                        |                 | 410911.0799 | 4021031.0051 |
|                        |                 | 411171.1912 | 4021661.1653 |
|                        |                 | 411449.4651 | 4021702.9848 |
|                        |                 | 411604.4684 | 4021726.2842 |
|                        |                 | 411753.6515 | 4021748.6529 |
|                        |                 | 411802.8532 | 4021756.0718 |
|                        |                 | 411937.4110 | 4020860.1271 |
| T4-3                   | 0.24            | 414222.0726 | 4020969.0150 |
|                        |                 | 414160.6092 | 4020885.8261 |
|                        |                 | 413982.9758 | 4020645.4436 |
|                        |                 | 413893.6355 | 4020524.5934 |
|                        |                 | 413796.2475 | 4020548.7970 |
|                        |                 | 413549.3839 | 4020610.1560 |
|                        |                 | 413575.0389 | 4020713.6689 |
|                        |                 | 413487.5647 | 4020735.4114 |
|                        |                 | 413301.3640 | 4020707.4619 |
|                        |                 | 413034.4897 | 4020346.0780 |
|                        |                 | 412906.4567 | 4020440.6744 |
|                        |                 | 412857.9724 | 4020476.5179 |
|                        |                 | 413096.9447 | 4020800.0171 |
|                        |                 | 413074.9993 | 4020946.8083 |
|                        |                 | 413055.0876 | 4021078.5086 |
|                        |                 | 413184.2856 | 4021094.6091 |
|                        |                 | 413342.9646 | 4021118.4411 |
|                        |                 | 413615.7688 | 4021163.4678 |
|                        |                 | 413741.0231 | 4021324.3436 |
|                        |                 | 413898.4688 | 4021208.0224 |
|                        |                 | 414222.0726 | 4020969.0150 |
| T4-3 Addition          | 0.14            | 413893.6355 | 4020524.5934 |
|                        |                 | 413877.7052 | 4020502.9468 |
|                        |                 | 414001.4695 | 4020502.4758 |
|                        |                 | 414001.2533 | 4020257.4915 |
|                        |                 | 413893.7745 | 4020264.7699 |
|                        |                 | 413767.6592 | 4020273.3310 |
|                        |                 | 413695.4389 | 4020332.7395 |
|                        |                 | 413677.0551 | 4020225.3030 |
|                        |                 | 413700.3399 | 4020128.3549 |
|                        |                 | 413627.7543 | 4020158.1265 |
|                        |                 | 413549.0822 | 4020190.3946 |
|                        |                 | 413490.8659 | 4020190.3962 |
|                        |                 | 413444.3883 | 4020190.3975 |
|                        |                 | 413424.8082 | 4020157.2395 |
|                        |                 | 413385.0218 | 4020104.3834 |
|                        |                 | 413343.6338 | 4020101.2053 |
|                        |                 | 413266.1224 | 4020221.4128 |
|                        |                 | 413216.5995 | 4020220.4049 |
|                        |                 | 413034.4897 | 4020346.0780 |

| 2003 Dust Control Area |                 |             |              |
|------------------------|-----------------|-------------|--------------|
| Area ID                | Area (sq miles) | UTM X       | UTM Y        |
|                        |                 | 413301.3640 | 4020707.4619 |
|                        |                 | 413487.5647 | 4020735.4114 |
|                        |                 | 413575.0389 | 4020713.6689 |
|                        |                 | 413549.3839 | 4020610.1560 |
|                        |                 | 413796.2475 | 4020548.7970 |
|                        |                 | 413893.6355 | 4020524.5934 |
| T4-4                   | 0.26            | 413814.0009 | 4021770.5574 |
|                        |                 | 413975.7851 | 4021651.0243 |
|                        |                 | 413741.0231 | 4021324.3436 |
|                        |                 | 413615.7688 | 4021163.4678 |
|                        |                 | 413342.9646 | 4021118.4411 |
|                        |                 | 413184.2856 | 4021094.6091 |
|                        |                 | 413055.0876 | 4021078.5086 |
|                        |                 | 413012.4600 | 4021362.4643 |
|                        |                 | 412928.1826 | 4021923.8598 |
|                        |                 | 413490.4317 | 4022009.5808 |
|                        |                 | 413652.2147 | 4021890.0650 |
|                        |                 | 413814.0009 | 4021770.5574 |
| T4-5                   | 0.11            | 413729.5137 | 4022333.1288 |
|                        |                 | 413490.4317 | 4022009.5808 |
|                        |                 | 412928.1826 | 4021923.8598 |
|                        |                 | 412849.6316 | 4021982.9620 |
|                        |                 | 413088.6035 | 4022306.4585 |
|                        |                 | 413166.9434 | 4022248.5872 |
|                        |                 | 413406.0618 | 4022572.1831 |
|                        |                 | 413729.5137 | 4022333.1288 |
| T5                     | 0.84            | 414615.6262 | 4022178.5720 |
|                        |                 | 414426.4783 | 4021922.6108 |
|                        |                 | 414376.5555 | 4021855.0570 |
|                        |                 | 414700.1075 | 4021616.0524 |
|                        |                 | 414505.9987 | 4021353.3100 |
|                        |                 | 414461.0480 | 4021292.4897 |
|                        |                 | 414222.0726 | 4020969.0150 |
|                        |                 | 413898.4688 | 4021208.0224 |
|                        |                 | 413741.0231 | 4021324.3436 |
|                        |                 | 413975.7851 | 4021651.0243 |
|                        |                 | 413814.0009 | 4021770.5574 |
|                        |                 | 413865.8579 | 4021840.7154 |
|                        |                 | 413931.8875 | 4021930.0605 |
|                        |                 | 414053.0895 | 4022094.0927 |
|                        |                 | 413729.5137 | 4022333.1288 |
|                        |                 | 413406.0618 | 4022572.1831 |
|                        |                 | 413166.9434 | 4022248.5872 |
|                        |                 | 413088.6035 | 4022306.4585 |
|                        |                 | 412843.4972 | 4022487.5883 |
|                        |                 | 412520.0138 | 4022726.6285 |
|                        |                 | 412292.7693 | 4022894.4741 |

| 2003 Dust Control Area |                 |             |              |
|------------------------|-----------------|-------------|--------------|
| Area ID                | Area (sq miles) | UTM X       | UTM Y        |
|                        |                 | 412264.8371 | 4022915.1168 |
|                        |                 | 412196.4642 | 4022965.6545 |
|                        |                 | 412269.0657 | 4023063.9330 |
|                        |                 | 412327.9694 | 4023143.6398 |
|                        |                 | 412435.5486 | 4023289.1826 |
|                        |                 | 412237.2383 | 4023435.6152 |
|                        |                 | 412159.2499 | 4023493.2116 |
|                        |                 | 412114.1288 | 4023531.1972 |
|                        |                 | 412316.2796 | 4023804.5494 |
|                        |                 | 412351.0895 | 4023851.6783 |
|                        |                 | 412674.5366 | 4023612.7141 |
|                        |                 | 412997.9834 | 4023373.7502 |
|                        |                 | 413321.5800 | 4023134.6691 |
|                        |                 | 413645.0264 | 4022895.7058 |
|                        |                 | 413968.6226 | 4022656.6253 |
|                        |                 | 414292.0677 | 4022417.6245 |
|                        |                 | 414615.6262 | 4022178.5720 |
| T5-1                   | 0.14            | 414429.2165 | 4020500.8382 |
| -                      | _               | 414232.1268 | 4020501.5982 |
|                        |                 | 414001.4695 | 4020502.4758 |
|                        |                 | 413877.7052 | 4020502.9468 |
|                        |                 | 413893.6355 | 4020524.5934 |
|                        |                 | 413982.9758 | 4020645.4436 |
|                        |                 | 414160.6092 | 4020885.8261 |
|                        |                 | 414222.0726 | 4020969.0150 |
|                        |                 | 414461 0480 | 4021292 4897 |
|                        |                 | 414505 9987 | 4021353 3100 |
|                        |                 | 414557 3614 | 4020853 0236 |
|                        |                 | 414632 3454 | 4020833.6250 |
|                        |                 | 414717 5371 | 4020809 5032 |
|                        |                 | 414704 8599 | 4020005.5052 |
|                        |                 | 414429 2165 | 4020500 8382 |
| T5_2                   | 0.03            | 414425.2105 | 4020300.0302 |
| 13-2                   | 0.05            | 415815 3044 | 4022792 4623 |
|                        |                 | 41570A 171A | 4022732.4023 |
|                        |                 | 415756 1678 | 4022074.3314 |
|                        |                 | 415050.1028 | 4022310.0832 |
|                        |                 | 415055.2471 | 4023233.3923 |
| TE O                   | 0.22            | 410000.0007 | 4023113.3070 |
| 15-3                   | 0.22            | 41000./120  | 4022304./090 |
|                        |                 | 415320.3303 | 4022003.3340 |
|                        |                 | 41000.000   | 4022094.3130 |
|                        |                 | 415192./023 | 4022439.0891 |
|                        |                 | 415127.4250 | 4022351.2549 |
|                        |                 | 415106.6480 | 4022323.0048 |
|                        |                 | 415148.1754 | 4022285.3898 |
|                        |                 | 4151/8.1078 | 4022263.0525 |
| I                      | I               | 415146.6854 | 4022220.5223 |

| 2003 Dust Control Area |                 |             |              |
|------------------------|-----------------|-------------|--------------|
| Area ID                | Area (sq miles) | UTM X       | UTM Y        |
|                        |                 | 414989.6965 | 4022007.9919 |
|                        |                 | 414750.3341 | 4021684.0582 |
|                        |                 | 414700.1075 | 4021616.0524 |
|                        |                 | 414376.5555 | 4021855.0570 |
|                        |                 | 414426.4783 | 4021922.6108 |
|                        |                 | 414615.6262 | 4022178.5720 |
|                        |                 | 414854.5912 | 4022502.0156 |
|                        |                 | 415093.6715 | 4022825.5607 |
|                        |                 | 415332.6768 | 4023149.0322 |
|                        |                 | 415453.5288 | 4023059.7725 |
|                        |                 | 415580.7123 | 4022964.7690 |
| T5-4                   | 0.06            | 413814.0009 | 4021770.5574 |
|                        |                 | 413652.2147 | 4021890.0650 |
|                        |                 | 413490.4317 | 4022009.5808 |
|                        |                 | 413729.5137 | 4022333.1288 |
|                        |                 | 414053.0895 | 4022094.0927 |
|                        |                 | 413931.8875 | 4021930.0605 |
|                        |                 | 413865.8579 | 4021840.7154 |
|                        |                 | 413814.0009 | 4021770.5574 |
| T6                     | 0.87            | 415093.6715 | 4022825.5607 |
|                        | 0.07            | 414854.5912 | 4022502.0156 |
|                        |                 | 414615.6262 | 4022178.5720 |
|                        |                 | 414292 0677 | 4022417 6245 |
|                        |                 | 413968 6226 | 4022656 6253 |
|                        |                 | 413645 0264 | 4022895 7058 |
|                        |                 | 413321 5800 | 4023134 6691 |
|                        |                 | 413921.3000 | 4023134.0031 |
|                        |                 | 412557.5854 | 4023575.7502 |
|                        |                 | 412251 0805 | 4023012.7141 |
|                        |                 | 412331.0033 | 4023031.0785 |
|                        |                 | 412595.1752 | 4023908.0402 |
|                        |                 | 412390.0341 | 4024175.1255 |
|                        |                 | 412710.3203 | 4024343.5758 |
|                        |                 | 412029.1755 | 4024498.0832 |
|                        |                 | 413132.4091 | 4024239.7978 |
|                        |                 | 413475.9145 | 4024020.7953 |
|                        |                 | 413799.5105 | 4023781.7139 |
|                        |                 | 414122.9555 | 4023542.7119 |
|                        |                 | 414446.5511 | 4023303.6311 |
|                        |                 | 414//0.14/3 | 4023064.5885 |
|                        |                 | 415093.6/15 | 4022825.5607 |
| Τ7                     | 0.94            | 413520.9060 | 4024987.7652 |
|                        |                 | 413630.5473 | 4024906.7559 |
|                        |                 | 413705.0932 | 4024851.6720 |
|                        |                 | 413813.9702 | 4024771.2201 |
|                        |                 | 413954.0157 | 4024667.7535 |
|                        |                 | 414277.5935 | 4024428.7163 |
|                        | I               | 414601.0379 | 4024189.7139 |

| 2003 Dust Control Area |                 |             |              |
|------------------------|-----------------|-------------|--------------|
| Area ID                | Area (sq miles) | UTM X       | UTM Y        |
|                        |                 | 414924.6337 | 4023950.6707 |
|                        |                 | 415248.2293 | 4023711.6277 |
|                        |                 | 415571.8247 | 4023472.5851 |
|                        |                 | 415895.2471 | 4023233.5923 |
|                        |                 | 415656.1628 | 4022910.0892 |
|                        |                 | 415622.4090 | 4022934.9994 |
|                        |                 | 415580.7123 | 4022964.7690 |
|                        |                 | 415453.5288 | 4023059.7725 |
|                        |                 | 415332.6768 | 4023149.0322 |
|                        |                 | 415093.6715 | 4022825.5607 |
|                        |                 | 414770.1473 | 4023064.5885 |
|                        |                 | 414446.5511 | 4023303.6311 |
|                        |                 | 414122.9555 | 4023542.7119 |
|                        |                 | 413799.5105 | 4023781.7139 |
|                        |                 | 413475.9145 | 4024020.7953 |
|                        |                 | 413152.4691 | 4024259.7978 |
|                        |                 | 412829.1735 | 4024498.6832 |
|                        |                 | 413005.9543 | 4024737.9616 |
|                        |                 | 413068.1384 | 4024822.1295 |
|                        |                 | 413307.2567 | 4025145.6105 |
|                        |                 | 413520.9060 | 4024987.7652 |
| Т8                     | 0.87            | 414755.6684 | 4025075.7084 |
|                        |                 | 414987.6679 | 4024904.2813 |
|                        |                 | 415079.1212 | 4024836.7146 |
|                        |                 | 415225.2485 | 4024728.7512 |
|                        |                 | 415402.7156 | 4024597.6328 |
|                        |                 | 415721.8772 | 4024363.7439 |
|                        |                 | 416049.7522 | 4024119.5115 |
|                        |                 | 416373.1960 | 4023880.5480 |
|                        |                 | 416696.6388 | 4023641.5466 |
|                        |                 | 416457.6759 | 4023318.1030 |
|                        |                 | 416213.7556 | 4022998.2673 |
|                        |                 | 416081.2099 | 4023096.2253 |
|                        |                 | 416056.8587 | 4023113.9676 |
|                        |                 | 415895.2471 | 4023233.5923 |
|                        |                 | 415571.8247 | 4023472.5851 |
|                        |                 | 415248.2293 | 4023711.6277 |
|                        |                 | 414924.6337 | 4023950.6707 |
|                        |                 | 414601.0379 | 4024189.7139 |
|                        |                 | 414277.5935 | 4024428.7163 |
|                        |                 | 413954.0157 | 4024667.7535 |
|                        |                 | 414117.8568 | 4024889.3542 |
|                        |                 | 414193.0965 | 4024991.1381 |
|                        |                 | 414365.0268 | 4025223.8960 |
|                        |                 | 414432.1019 | 4025314.6897 |
|                        |                 | 414755.6684 | 4025075.7084 |
| T8W                    | 0.21            | 414516.2449 | 4026002.5719 |

| 2003 Dust Control Area |                 |             |              |
|------------------------|-----------------|-------------|--------------|
| Area ID                | Area (sq miles) | UTM X       | UTM Y        |
|                        |                 | 414628.9092 | 4025919.5013 |
|                        |                 | 414592.2070 | 4025869.8256 |
|                        |                 | 414509.4040 | 4025757.7501 |
|                        |                 | 414573.9046 | 4025710.0958 |
|                        |                 | 414832.3590 | 4025517.9893 |
|                        |                 | 414714.1101 | 4025356.9862 |
|                        |                 | 414875.1490 | 4025237.4744 |
|                        |                 | 414828.4698 | 4025174.2710 |
|                        |                 | 414755.6684 | 4025075.7084 |
|                        |                 | 414432.1019 | 4025314.6897 |
|                        |                 | 414365.0268 | 4025223.8960 |
|                        |                 | 414193.0965 | 4024991.1381 |
|                        |                 | 414117.8568 | 4024889.3542 |
|                        |                 | 413954.0157 | 4024667.7535 |
|                        |                 | 413813.9702 | 4024771.2201 |
|                        |                 | 413705.0932 | 4024851.6720 |
|                        |                 | 413630.5473 | 4024906.7559 |
|                        |                 | 413520.9060 | 4024987.7652 |
|                        |                 | 414210.4545 | 4025245.9289 |
|                        |                 | 414234.5783 | 4025278.7465 |
|                        |                 | 414265.6270 | 4025321.6698 |
|                        |                 | 414260.7145 | 4025375.7117 |
|                        |                 | 414249.7773 | 4025496.0299 |
|                        |                 | 414253.5442 | 4025523.3931 |
|                        |                 | 414275.2628 | 4025680.9863 |
|                        |                 | 414383.8825 | 4025998.0971 |
|                        |                 | 414433.1201 | 4026063.8621 |
|                        |                 | 414516.2449 | 4026002.5719 |
| Т9                     | 0.46            | 416987.0241 | 4023427.0505 |
|                        |                 | 416933.0673 | 4023305.0811 |
|                        |                 | 416213.7556 | 4022998.2673 |
|                        |                 | 416457.6759 | 4023318.1030 |
|                        |                 | 416696.6388 | 4023641.5466 |
|                        |                 | 416373.1960 | 4023880.5480 |
|                        |                 | 416049.7522 | 4024119.5115 |
|                        |                 | 415721.8772 | 4024363.7439 |
|                        |                 | 415752.1670 | 4024382.2273 |
|                        |                 | 415795.7936 | 4024428.4142 |
|                        |                 | 416222.2418 | 4025004.5422 |
|                        |                 | 416423.1407 | 4025002.1395 |
|                        |                 | 416999.8010 | 4024996.4655 |
|                        |                 | 417001.1420 | 4024947.4364 |
|                        |                 | 417009.4547 | 4024643.4367 |
|                        |                 | 416773.5777 | 4024179.3380 |
|                        |                 | 416740.4644 | 4024114.1911 |
|                        |                 | 416644.2056 | 4023924.8115 |
|                        |                 | 416681.7283 | 4023739.4429 |

| Area ID      | Area (sq miles) | UTM X       | UTM Y        |
|--------------|-----------------|-------------|--------------|
|              |                 | 416700.3078 | 4023672.4212 |
|              |                 | 416724.9459 | 4023638.9524 |
|              |                 | 416791.8080 | 4023571.3270 |
|              |                 | 416987.0241 | 4023427.0505 |
| T11          | 0.67            | 416016.5518 | 4027163.7735 |
|              |                 | 415892.7261 | 4026970.7408 |
|              |                 | 415850.0994 | 4026904.2901 |
|              |                 | 415790.4216 | 4026811.2579 |
|              |                 | 415677.0319 | 4026634.4934 |
|              |                 | 415640.1630 | 4026578.7438 |
|              |                 | 415466.7219 | 4026708.6625 |
|              |                 | 415342.4782 | 4027059.9901 |
|              |                 | 415340.1072 | 4027066.6946 |
|              |                 | 415303.7796 | 4027171.2685 |
|              |                 | 415233.1529 | 4027179.3891 |
|              |                 | 415156.5509 | 4027188.1773 |
|              |                 | 414946.8125 | 4027212.2390 |
|              |                 | 414946.0613 | 4027212.3252 |
|              |                 | 414829.7448 | 4027225.6694 |
|              |                 | 414704.5839 | 4027293.5349 |
|              |                 | 414666.3683 | 4027314.2564 |
|              |                 | 414603.3991 | 4027348.4000 |
|              |                 | 414525 4449 | 4027872 6930 |
|              |                 | 414845 5480 | 4028265 1622 |
|              |                 | 415530 3795 | 4028205.1022 |
|              |                 | 415969 6875 | 4028562 7110 |
|              |                 | 415987 3754 | 4028348 7866 |
|              |                 | 415812 0017 | 4027654 7770 |
|              |                 | 415815 0825 | 4027594.0878 |
|              |                 | 415819 5445 | 4027506 2313 |
|              |                 | 415821 2552 | 4027300.2313 |
|              |                 | 415820 0210 | 4027472.3344 |
|              |                 | 415055 5124 | 4027301.7100 |
|              |                 | 415955.5124 | 4027208.8937 |
| <b>T12 1</b> | 1 10            | 410010.5518 | 4027103.7733 |
| 113-1        | 1.10            | 419904.9301 | 4027727.9417 |
|              |                 | 419013.0913 | 4027323.2907 |
|              |                 | 419720.2073 | 4027404.3240 |
|              |                 | 419887.7273 | 4027284.9795 |
|              |                 | 419048.9217 | 4020901.5818 |
|              |                 | 419810.2777 | 4020841.0888 |
|              |                 | 419/48.5558 | 4020/5/.0003 |
|              |                 | 419525.0923 | 4026455.4515 |
|              |                 | 419499.4993 | 4026420.9158 |
|              |                 | 419206.2888 | 4026038.3123 |
|              |                 | 419051.1767 | 4026152.9153 |
|              |                 | 418944.5404 | 4026008.5914 |
|              |                 | 418812.4327 | 4025829.9087 |

| 2003 Dust Control Area |                 |             |              |
|------------------------|-----------------|-------------|--------------|
| Area ID                | Area (sq miles) | UTM X       | UTM Y        |
|                        |                 | 418650.4050 | 4025948.9162 |
|                        |                 | 418530.6017 | 4025787.6073 |
|                        |                 | 418369.1355 | 4025906.6763 |
|                        |                 | 418250.0503 | 4025745.2361 |
|                        |                 | 418087.8706 | 4025864.4329 |
|                        |                 | 417965.0399 | 4025698.1844 |
|                        |                 | 417848.8505 | 4025540.9244 |
|                        |                 | 417363.5983 | 4025899.4766 |
|                        |                 | 417483.0867 | 4026061.2172 |
|                        |                 | 417946.2974 | 4026526.0033 |
|                        |                 | 418277.6506 | 4026974.4807 |
|                        |                 | 419022.1895 | 4027514.9917 |
|                        |                 | 419318.0047 | 4028206.2594 |
|                        |                 | 419437.6778 | 4028367.7751 |
|                        |                 | 419922.7917 | 4028009.4868 |
|                        |                 | 419803.4484 | 4027847.6038 |
|                        |                 | 419853.4559 | 4027810.6655 |
|                        |                 | 419964.9561 | 4027727.9417 |
| T13-2                  | 0.61            | 419318.0047 | 4028206.2594 |
|                        |                 | 419022.1895 | 4027514.9917 |
|                        |                 | 418277.6506 | 4026974.4807 |
|                        |                 | 417946.2974 | 4026526.0033 |
|                        |                 | 417483.0867 | 4026061.2172 |
|                        |                 | 417366.8592 | 4026147.0905 |
|                        |                 | 417170.2116 | 4026293.6483 |
|                        |                 | 417289.1233 | 4026454.5769 |
|                        |                 | 418725.6089 | 4028396.0970 |
|                        |                 | 418940.0949 | 4028435.3170 |
|                        |                 | 418994.5143 | 4028445.2593 |
|                        |                 | 419318.0047 | 4028206.2594 |
| T13-3                  | 0.68            | 417985.8357 | 4028530.6268 |
|                        |                 | 418270.9212 | 4028479.7747 |
|                        |                 | 418552.1861 | 4028522.0171 |
|                        |                 | 418641.0131 | 4028456.3877 |
|                        |                 | 418725.6089 | 4028396.0970 |
|                        |                 | 417289.1233 | 4026454.5769 |
|                        |                 | 417122.8974 | 4026577.3922 |
|                        |                 | 417084.2094 | 4026850.3179 |
|                        |                 | 417168.0579 | 4027307.0306 |
|                        |                 | 417084.6434 | 4027863.9835 |
|                        |                 | 417123.5860 | 4027916.7888 |
|                        |                 | 417149.3087 | 4027977.2199 |
|                        |                 | 417545.6899 | 4028513.6273 |
|                        |                 | 417827.9025 | 4028557.0432 |
|                        |                 | 417876.9859 | 4028548.4822 |
|                        |                 | 417985.8357 | 4028530.6268 |
| T18N                   | 0.85            | 419496.3620 | 4034252.3887 |

| 2003 Dust Control Area |                 |             |              |
|------------------------|-----------------|-------------|--------------|
| Area ID                | Area (sq miles) | UTM X       | UTM Y        |
|                        |                 | 419832.6228 | 4034141.1372 |
|                        |                 | 419802.4606 | 4033687.7767 |
|                        |                 | 419771.8711 | 4033218.0199 |
|                        |                 | 419606.1581 | 4032994.4389 |
|                        |                 | 419929.6632 | 4032755.4136 |
|                        |                 | 420091.3942 | 4032635.9359 |
|                        |                 | 419976.1285 | 4032480.3898 |
|                        |                 | 420133.8016 | 4032354.8284 |
|                        |                 | 420425.7541 | 4032122.7085 |
|                        |                 | 420448.8685 | 4032104.3398 |
|                        |                 | 420460.8875 | 4031607.1656 |
|                        |                 | 420174.1314 | 4031339.0630 |
|                        |                 | 420132.5084 | 4031300.4919 |
|                        |                 | 420102.1497 | 4031215.3678 |
|                        |                 | 420051.6551 | 4031073.7611 |
|                        |                 | 420067.1527 | 4030907.7868 |
|                        |                 | 419953.0593 | 4030737.6865 |
|                        |                 | 419301.2890 | 4031913.5165 |
|                        |                 | 419167.5391 | 4032516.0753 |
|                        |                 | 419250.4837 | 4033085.9106 |
|                        |                 | 419239.5306 | 4033150.5146 |
|                        |                 | 419365.9142 | 4033768.8440 |
|                        |                 | 419466.7915 | 4034261.8713 |
|                        |                 | 419496.3620 | 4034252.3887 |
| T18S                   | 1.82            | 419953.0593 | 4030737.6865 |
|                        |                 | 420100.9126 | 4030629.4127 |
|                        |                 | 420270.2682 | 4030504.5926 |
|                        |                 | 420257.4813 | 4030470.7618 |
|                        |                 | 419822.9960 | 4029884.0794 |
|                        |                 | 419798.7906 | 4029851.3951 |
|                        |                 | 419084.5984 | 4029747.7702 |
|                        |                 | 418383.2186 | 4029647.0736 |
|                        |                 | 418130.4116 | 4029646.0180 |
|                        |                 | 417852.8347 | 4029647.5471 |
|                        |                 | 417771.7107 | 4029657.7122 |
|                        |                 | 417699.9538 | 4029667.9768 |
|                        |                 | 417653.3789 | 4029674.6594 |
|                        |                 | 417521.5049 | 4029776.4691 |
|                        |                 | 417581.9086 | 4030267.7438 |
|                        |                 | 417605.6678 | 4030460.9564 |
|                        |                 | 417838.7772 | 4030929.0825 |
|                        |                 | 418459.9718 | 4031788.9629 |
|                        |                 | 418889.1261 | 4032024.0241 |
|                        |                 | 418754.0253 | 4033026.4824 |
|                        |                 | 419084.1419 | 4033110.8123 |
|                        |                 | 419239.5306 | 4033150.5146 |
|                        |                 | 419250.4837 | 4033085.9106 |

| Area ID Area (sq miles) 419 | UTM X UTM Y           |
|-----------------------------|-----------------------|
| 419                         |                       |
|                             | 4032516.0753          |
| 419                         | 4031913.5165          |
| 419                         | 953.0593 4030737.6865 |
| T23E 1.16 422               | 559.8892 4034701.7965 |
| 422                         | 429.2563 4034127.0388 |
| 421                         | 482.5827 4034132.2129 |
| 420                         | 888.8631 4034972.0417 |
| 420                         | 872.6936 4034994.9138 |
| 420                         | 562.6228 4035433.5165 |
| 422                         | 377.3155 4036418.9679 |
| 422                         | 544.4991 4036065.0490 |
| 422                         | 546.3765 4035898.7421 |
| 422                         | 559.8892 4034701.7965 |
| T23W 0.70 420               | 888.8631 4034972.0417 |
| 421                         | 482.5827 4034132.2129 |
| 420                         | 004.5740 4034139.6849 |
| 419                         | 832.6228 4034141.1372 |
| 419                         | 496.3620 4034252.3887 |
| 419                         | 466.7915 4034261.8713 |
| 419                         | 4034342.8214          |
| 419                         | 188.9454 4034400.9790 |
| 419                         | 064.9605 4034610.8362 |
| 420                         | 562.6228 4035433.5165 |
| 420                         | 872.6936 4034994.9138 |
| 420                         | 888.8631 4034972.0417 |
| T24 1.70 421                | 775.5115 4037695.3945 |
| 422                         | 237.3513 4036716.5520 |
| 422                         | 377.3155 4036418.9679 |
| 420                         | 562.6228 4035433.5165 |
| 419                         | 459.5560 4036993.8362 |
| 421                         | 317.9300 4038183.2674 |
| 421                         | 672.5269 4037910.9745 |
| 421                         | 775.5115 4037695.3945 |
| T24 Addition 0.07 422       | 237.3513 4036716.5520 |
| 421                         | 775.5115 4037695.3945 |
| 421                         | 815.4472 4037708.0812 |
| 422                         | 114.0386 4037354.1188 |
| 422                         | 305.0531 4037054.4245 |
| 422                         | 453.6130 4036821.3405 |
| 422                         | 237.3513 4036716.5520 |
| T25N 0.40 419               | 459.5560 4036993.8362 |
| 418                         | 4036174.1094          |
| 417                         | 974.8683 4036933.5367 |
| 419                         | 017.0594 4037619.7626 |
| 419                         | 459.5560 4036993.8362 |
| T25S 1.28 420               | 562.6228 4035433.5165 |
| 419                         | 064.9605 4034610.8362 |

| 2003 Dust Control Area |                 |             |              |
|------------------------|-----------------|-------------|--------------|
| Area ID                | Area (sq miles) | UTM X       | UTM Y        |
|                        |                 | 418665.8457 | 4034527.9245 |
|                        |                 | 418192.9713 | 4036174.1094 |
|                        |                 | 419459.5560 | 4036993.8362 |
|                        |                 | 420562.6228 | 4035433.5165 |
| T26                    | 1.33            | 420260.2740 | 4038939.6141 |
|                        |                 | 420448.8516 | 4038850.6281 |
|                        |                 | 421317.9300 | 4038183.2674 |
|                        |                 | 419459.5560 | 4036993.8362 |
|                        |                 | 419017.0594 | 4037619.7626 |
|                        |                 | 417959.0480 | 4039116.3619 |
|                        |                 | 418789.3715 | 4038860.6801 |
|                        |                 | 420260.2740 | 4038939.6141 |
| T27 Addition           | 0.08            | 416936.4016 | 4038118.4003 |
|                        |                 | 417056.7418 | 4037995.5171 |
|                        |                 | 416908.7138 | 4037982.5250 |
|                        |                 | 416631.9746 | 4038195.4231 |
|                        |                 | 416422.7260 | 4038451.3374 |
|                        |                 | 416046.9016 | 4038858.3728 |
|                        |                 | 415865.4763 | 4039054.8651 |
|                        |                 | 415933.4067 | 4039143.8996 |
|                        |                 | 416483.8237 | 4038580.2742 |
|                        |                 | 416936.4016 | 4038118.4003 |
| T27N                   | 0.86            | 417959.0480 | 4039116.3619 |
|                        |                 | 416936.4016 | 4038118.4003 |
|                        |                 | 416483.8237 | 4038580.2742 |
|                        |                 | 415933.4067 | 4039143.8996 |
|                        |                 | 416323.1348 | 4039525.0305 |
|                        |                 | 416658.3540 | 4039852.3712 |
|                        |                 | 417121.6189 | 4040304.5343 |
|                        |                 | 417255.4209 | 4040111.6752 |
|                        |                 | 417959.0480 | 4039116.3619 |
| T27S                   | 0.85            | 419017.0594 | 4037619.7626 |
|                        |                 | 417974.8683 | 4036933.5367 |
|                        |                 | 417924.4340 | 4037108.4563 |
|                        |                 | 417056.7418 | 4037995.5171 |
|                        |                 | 416936.4016 | 4038118.4003 |
|                        |                 | 417959.0480 | 4039116.3619 |
|                        |                 | 419017.0594 | 4037619.7626 |
| T28N                   | 0.71            | 418687.1386 | 4040203.3591 |
| _                      |                 | 418733.7251 | 4040126.7522 |
|                        |                 | 418872.7825 | 4039997.9387 |
|                        |                 | 417959.0480 | 4039116.3619 |
|                        |                 | 417255.4209 | 4040111.6752 |
|                        |                 | 417121.6189 | 4040304.5343 |
|                        |                 | 417473.8189 | 4040647.9564 |
|                        |                 | 417921.3802 | 4041084.8832 |
|                        |                 | 418093.9730 | 4041254.0466 |
| 1                      | 1               |             |              |

| 2003 Dust Control Area |                 |             |              |
|------------------------|-----------------|-------------|--------------|
| Area ID                | Area (sq miles) | UTM X       | UTM Y        |
|                        |                 | 418155.9146 | 4041076.4185 |
|                        |                 | 418687.1386 | 4040203.3591 |
| T28S                   | 0.47            | 420260.2740 | 4038939.6141 |
|                        |                 | 418789.3715 | 4038860.6801 |
|                        |                 | 417959.0480 | 4039116.3619 |
|                        |                 | 418872.7825 | 4039997.9387 |
|                        |                 | 419760.8752 | 4039175.2705 |
|                        |                 | 420260.2740 | 4038939.6141 |
| T29-1                  | 0.34            | 416435.5451 | 4041276.9560 |
|                        |                 | 416401.4863 | 4041252.8896 |
|                        |                 | 415073.9313 | 4041276.5425 |
|                        |                 | 415237.3285 | 4041985.5193 |
|                        |                 | 415381.2848 | 4042128.5039 |
|                        |                 | 415526.1742 | 4042272.4160 |
|                        |                 | 415526.4848 | 4042272.7244 |
|                        |                 | 415581.2762 | 4042327.1461 |
|                        |                 | 415630.5647 | 4042376.1020 |
|                        |                 | 415630.5765 | 4042376.1058 |
|                        |                 | 415636.0253 | 4042377.8375 |
|                        |                 | 415652.9389 | 4042383.2128 |
|                        |                 | 415653.6137 | 4042383.4273 |
|                        |                 | 415655.4980 | 4042384.0262 |
|                        |                 | 415655.6659 | 4042384.0795 |
|                        |                 | 416435.5451 | 4041276.9560 |
| T29-2                  | 0.75            | 415073.9313 | 4041276.5425 |
|                        |                 | 416401.4863 | 4041252.8896 |
|                        |                 | 416435.5451 | 4041276.9560 |
|                        |                 | 417121.6189 | 4040304.5343 |
|                        |                 | 416658.3540 | 4039852.3712 |
|                        |                 | 416144.0171 | 4040294.3138 |
|                        |                 | 415700.1604 | 4040309.2538 |
|                        |                 | 414814.5852 | 4040750.8719 |
|                        |                 | 414797.1740 | 4040944.3347 |
|                        |                 | 414835.3793 | 4040983.9777 |
|                        |                 | 414873.5845 | 4041023.6206 |
|                        |                 | 414850.9250 | 4041058.2850 |
|                        |                 | 414828.2654 | 4041092.9493 |
|                        |                 | 414928.6584 | 4041572.8182 |
|                        |                 | 415073.9313 | 4041276.5425 |
| T29-3                  | 0.40            | 416658.3540 | 4039852.3712 |
|                        |                 | 416323.1348 | 4039525.0305 |
|                        |                 | 414927.2536 | 4039990.1326 |
|                        |                 | 414931.2068 | 4040036.5085 |
|                        |                 | 414921.7343 | 4040096.5239 |
|                        |                 | 414906.2118 | 4040194.8691 |
|                        |                 | 414894.9833 | 4040266.0091 |
|                        |                 | 414848.0568 | 4040379.0156 |

| 2003 Dust Control Area |                 |             |              |
|------------------------|-----------------|-------------|--------------|
| Area ID                | Area (sq miles) | UTM X       | UTM Y        |
|                        |                 | 414814.5852 | 4040750.8719 |
|                        |                 | 415700.1604 | 4040309.2538 |
|                        |                 | 416144.0171 | 4040294.3138 |
|                        |                 | 416658.3540 | 4039852.3712 |
| T29-4                  | 0.26            | 416323.1348 | 4039525.0305 |
|                        |                 | 415933.4067 | 4039143.8996 |
|                        |                 | 415865.4763 | 4039054.8651 |
|                        |                 | 415536.0232 | 4039224.5107 |
|                        |                 | 415102.2160 | 4039351.9435 |
|                        |                 | 414905.7226 | 4039737.5501 |
|                        |                 | 414921.1090 | 4039918.0500 |
|                        |                 | 414927.2536 | 4039990.1326 |
|                        |                 | 416323.1348 | 4039525.0305 |
| T30-1                  | 1.08            | 417130.3805 | 4042995.6745 |
|                        |                 | 417384.3152 | 4042993.4517 |
|                        |                 | 417370.6762 | 4042778.5344 |
|                        |                 | 417719.8507 | 4042619.4658 |
|                        |                 | 417792.5767 | 4042117.6796 |
|                        |                 | 418026.3192 | 4042090.2555 |
|                        |                 | 418032.4649 | 4042385.2584 |
|                        |                 | 418154.9595 | 4042206.3723 |
|                        |                 | 418410.5623 | 4042382.5975 |
|                        |                 | 418608.9968 | 4042170.9490 |
|                        |                 | 418642.6771 | 4042098.0531 |
|                        |                 | 418743.9293 | 4042022.1567 |
|                        |                 | 418637.1570 | 4041594.2678 |
|                        |                 | 418746.9274 | 4040943.5424 |
|                        |                 | 418839.1598 | 4040396.7884 |
|                        |                 | 418687.1386 | 4040203.3591 |
|                        |                 | 418155.9146 | 4041076.4185 |
|                        |                 | 418093.9730 | 4041254.0466 |
|                        |                 | 417921.3802 | 4041084.8832 |
|                        |                 | 417171.9137 | 4041828.3044 |
|                        |                 | 416322.8671 | 4042382.8026 |
|                        |                 | 416237.8729 | 4042517.5607 |
|                        |                 | 416238.8166 | 4042563.7458 |
|                        |                 | 416407.4335 | 4042560.3903 |
|                        |                 | 416409.8771 | 4042560.3417 |
|                        |                 | 416410.0981 | 4042560.3373 |
|                        |                 | 416410.1386 | 4042560.3365 |
|                        |                 | 416413.8960 | 4042560.2618 |
|                        |                 | 416413.9066 | 4042562.5781 |
|                        |                 | 416413.9130 | 4042563.9624 |
|                        |                 | 416413.9324 | 4042568.1752 |
|                        |                 | 416413.9351 | 4042568.7621 |
|                        |                 | 416414.7844 | 4042753.4996 |
|                        |                 | 416415.9268 | 4043001.9282 |

| 2003 Dust Control Area |                 |             |              |
|------------------------|-----------------|-------------|--------------|
| Area ID                | Area (sq miles) | UTM X       | UTM Y        |
|                        |                 | 416475.6596 | 4043001.4053 |
|                        |                 | 416511.9599 | 4043001.0876 |
|                        |                 | 416737.3658 | 4042999.1146 |
|                        |                 | 416745.5359 | 4042999.0431 |
|                        |                 | 416748.7523 | 4042999.0149 |
|                        |                 | 416748.7581 | 4042999.0149 |
|                        |                 | 416757.0197 | 4042998.9425 |
|                        |                 | 416778.2654 | 4042998.7566 |
|                        |                 | 416779.0491 | 4042998.7497 |
|                        |                 | 416779.3644 | 4042998.7470 |
|                        |                 | 416782.0854 | 4042998.7231 |
|                        |                 | 416785.1959 | 4042998.6959 |
|                        |                 | 416802.5375 | 4042998.5441 |
|                        |                 | 416828.7613 | 4042998.3146 |
|                        |                 | 416834.3585 | 4042998.2656 |
|                        |                 | 416844.5115 | 4042998.1767 |
|                        |                 | 416853.3845 | 4042998.0990 |
|                        |                 | 416872.3079 | 4042997.9334 |
|                        |                 | 416874.3837 | 4042997.9152 |
|                        |                 | 416874.7151 | 4042997.9123 |
|                        |                 | 416874.9421 | 4042997.9104 |
|                        |                 | 417130.3805 | 4042995.6745 |
| T30-2                  | 0.49            | 416238.8166 | 4042563.7458 |
|                        |                 | 416237.8729 | 4042517.5607 |
|                        |                 | 416322.8671 | 4042382.8026 |
|                        |                 | 417171.9137 | 4041828.3044 |
|                        |                 | 417921.3802 | 4041084.8832 |
|                        |                 | 417473.8189 | 4040647.9564 |
|                        |                 | 416056.9737 | 4042059.9711 |
|                        |                 | 415869.3630 | 4042338.0433 |
|                        |                 | 416015.9120 | 4042330.2460 |
|                        |                 | 416018.9905 | 4042478.3471 |
|                        |                 | 416020.1409 | 4042533.6930 |
|                        |                 | 416020.5077 | 4042551.3401 |
|                        |                 | 416020.8582 | 4042568.1991 |
|                        |                 | 416238.8166 | 4042563.7458 |
| T30-3                  | 0.27            | 415665.8258 | 4042380.6277 |
|                        |                 | 415692.3612 | 4042371.6124 |
|                        |                 | 415869.3630 | 4042338.0433 |
|                        |                 | 416056.9737 | 4042059.9711 |
|                        |                 | 417473.8189 | 4040647.9564 |
|                        |                 | 417121.6189 | 4040304.5343 |
|                        |                 | 416435.5451 | 4041276.9560 |
|                        |                 | 415655.6659 | 4042384.0795 |
|                        |                 | 415655.9347 | 4042383.9882 |
|                        |                 | 415665.8258 | 4042380.6277 |
| T35-1                  | 0.12            | 410493.9516 | 4043001.1922 |

| 2003 Dust Control Area |                 |             |              |  |
|------------------------|-----------------|-------------|--------------|--|
| Area ID                | Area (sq miles) | UTM X       | UTM Y        |  |
|                        |                 | 410599.0285 | 4042999.1260 |  |
|                        |                 | 410587.3545 | 4042696.5373 |  |
|                        |                 | 410577.9311 | 4042452.2776 |  |
|                        |                 | 410001.6954 | 4042464.1381 |  |
|                        |                 | 410003.7039 | 4043010.8326 |  |
|                        |                 | 410268.6279 | 4043005.6231 |  |
|                        |                 | 410493.9516 | 4043001.1922 |  |
| T35-2                  | 0.13            | 410577.9311 | 4042452.2776 |  |
|                        |                 | 410757.3767 | 4042448.5842 |  |
|                        |                 | 410756.1353 | 4042245.4528 |  |
|                        |                 | 410754.6508 | 4042002.5380 |  |
|                        |                 | 410723.8358 | 4042002.5739 |  |
|                        |                 | 410000.0033 | 4042003.4174 |  |
|                        |                 | 410001.6954 | 4042464.1381 |  |
|                        |                 | 410577.9311 | 4042452.2776 |  |
| T36-1                  | 1.01            | 412652.1923 | 4041436.0645 |  |
|                        |                 | 412690.1314 | 4041406.0416 |  |
|                        |                 | 412833.6710 | 4041412.9150 |  |
|                        |                 | 412841.4082 | 4041505.7657 |  |
|                        |                 | 413191.4978 | 4041500.2871 |  |
|                        |                 | 413241.1228 | 4041488.5169 |  |
|                        |                 | 413443.2128 | 4041269.5238 |  |
|                        |                 | 413478.6456 | 4041158.2255 |  |
|                        |                 | 413561.2523 | 4041141.5984 |  |
|                        |                 | 413723.0869 | 4040965.9151 |  |
|                        |                 | 413750.7680 | 4040919.5075 |  |
|                        |                 | 414039.1683 | 4040436.0033 |  |
|                        |                 | 414010.8260 | 4040412.9166 |  |
|                        |                 | 413965.4168 | 4040383.7884 |  |
|                        |                 | 412673.7969 | 4040565.9749 |  |
|                        |                 | 410453.6629 | 4041239.6583 |  |
|                        |                 | 410825.3880 | 4041524.8233 |  |
|                        |                 | 410857.4942 | 4041549.4532 |  |
|                        |                 | 410860.8313 | 4041552.0132 |  |
|                        |                 | 410865.2368 | 4041555.3928 |  |
|                        |                 | 410874.3719 | 4041562.4007 |  |
|                        |                 | 410891.2200 | 4041575.3256 |  |
|                        |                 | 410908.7982 | 4041588.8105 |  |
|                        |                 | 410938.6899 | 4041611.7416 |  |
|                        |                 | 410968.0051 | 4041634.2304 |  |
|                        |                 | 410996.6969 | 4041656.2410 |  |
|                        |                 | 411054.7057 | 4041700.7419 |  |
|                        |                 | 411081.5448 | 4041721.3312 |  |
|                        |                 | 411089.3727 | 4041727.3363 |  |
|                        |                 | 411095.4672 | 4041732.0116 |  |
|                        |                 | 411224.0888 | 4041830.6824 |  |
|                        |                 | 411207 5629 | 4041904 7196 |  |

| 2003 Dust Control Area |                 |             |              |
|------------------------|-----------------|-------------|--------------|
| Area ID                | Area (sq miles) | UTM X       | UTM Y        |
|                        |                 | 411328.7980 | 4041911.0091 |
|                        |                 | 411404.1637 | 4041882.1942 |
|                        |                 | 412344.1688 | 4041513.1631 |
|                        |                 | 412682.1021 | 4041508.1389 |
|                        |                 | 412652.1923 | 4041436.0645 |
| T36-2                  | 1.04            | 414010.8260 | 4040412.9166 |
|                        |                 | 414002.9668 | 4040378.3377 |
|                        |                 | 414050.7092 | 4040298.5802 |
|                        |                 | 414211.1526 | 4040321.9816 |
|                        |                 | 414280.2236 | 4040319.3575 |
|                        |                 | 414347.5813 | 4040337.7609 |
|                        |                 | 414544.1961 | 4039918.4944 |
|                        |                 | 414532.4404 | 4039758.0190 |
|                        |                 | 414528.0492 | 4039697.5872 |
|                        |                 | 414085.8937 | 4039631.6364 |
|                        |                 | 411338.4485 | 4040324.4448 |
|                        |                 | 411230.3923 | 4040243.9095 |
|                        |                 | 410766.2080 | 4040418.8272 |
|                        |                 | 410754.5323 | 4040429.4164 |
|                        |                 | 410132.6677 | 4040993.4098 |
|                        |                 | 410453.6629 | 4041239.6583 |
|                        |                 | 412673.7969 | 4040565.9749 |
|                        |                 | 413965.4168 | 4040383.7884 |
|                        |                 | 414010.8260 | 4040412.9166 |
| T36-3                  | 0.35            | 414528.0492 | 4039697.5872 |
|                        |                 | 414537.5701 | 4039498.0063 |
|                        |                 | 414548.2365 | 4039274.9161 |
|                        |                 | 414550.5526 | 4039224.6348 |
|                        |                 | 414146.0294 | 4039386.3858 |
|                        |                 | 413592.7832 | 4039353.6958 |
|                        |                 | 412039.2079 | 4039939.1253 |
|                        |                 | 411230.3923 | 4040243.9095 |
|                        |                 | 411338.4485 | 4040324.4448 |
|                        |                 | 414085.8937 | 4039631.6364 |
|                        |                 | 414528.0492 | 4039697.5872 |

| _       | 2000 Dust (     | Juilliul Alea |               |
|---------|-----------------|---------------|---------------|
| Area ID | Area (sq miles) | UTM X         | UTM Y         |
| T1A-1   | 0.39            | 410110.0532   | 4021493.3823  |
|         |                 | 410038.4994   | 4021096.3389  |
|         |                 | 410027.5849   | 4021036.2856  |
|         |                 | 409998.0302   | 4020801.4793  |
|         |                 | 409724.2880   | 4020448.5196  |
|         |                 | 409487.6034   | 4020143.3409  |
|         |                 | 409409.2894   | 4020065.3131  |
|         |                 | 409362.4622   | 4020009.5035  |
|         |                 | 409276.4247   | 4020023.1050  |
|         |                 | 409280.4484   | 4020086.9084  |
|         |                 | 409223.1416   | 4020188.3568  |
|         |                 | 409215 0243   | 4020302 8876  |
|         |                 | 409166 5836   | 4020986 3494  |
|         |                 | 409100.3830   | 4020900.5454  |
|         |                 | 409143.2004   | 4021003.3442  |
|         |                 | 409179 6823   | 40217745 9744 |
|         |                 | 400104 6701   | 4021743.5744  |
|         |                 | 403134.0701   | 4021721.5470  |
|         |                 | 409209.7590   | 4021033.0128  |
|         |                 | 403223.4173   | 4021076.7001  |
|         |                 | 409252.5708   | 4021040.4477  |
|         |                 | 409273.0308   | 4021024.1373  |
|         |                 | 409294.0511   | 4021004.2271  |
|         |                 | 409525.5510   | 4021379.0073  |
|         |                 | 409359.8403   | 4021552.0023  |
|         |                 | 409394.2097   | 4021530.5798  |
|         |                 | 409430.4700   | 4021510.7705  |
|         |                 | 409469.1538   | 4021492.9143  |
|         |                 | 409509.3814   | 4021477.5621  |
|         |                 | 409541.7453   | 4021467.7021  |
|         |                 | 409587.0138   | 4021456.9762  |
|         |                 | 409628.6050   | 4021450.2633  |
|         |                 | 409667.1756   | 4021446.5232  |
|         |                 | 409702.2970   | 4021445.4495  |
|         |                 | 409734.0450   | 4021446.0422  |
|         |                 | 409774.5213   | 4021449.4157  |
|         |                 | 409835.6679   | 4021458.1413  |
|         |                 | 409886.0723   | 4021465.7122  |
|         |                 | 409975.4401   | 4021479.1355  |
|         |                 | 410079.1896   | 4021494.7189  |
|         |                 | 410110.0532   | 4021493.3823  |
| T1A-2   | 1.09            | 410517.8291   | 4023045.8856  |
|         |                 | 410987.9078   | 4022252.4215  |
|         |                 | 411151.2016   | 4022147.9844  |
|         |                 | 411069.6619   | 4022043.1456  |
|         |                 | 410794.5608   | 4021690.3326  |
|         |                 | 410772.2220   | 4021661.6656  |
|         |                 | 410723.1430   | 4021595.2150  |

| 410566.9152   4021570.1680     410350.3675   4021535.4504     410110.0532   4021493.3823     410079.1896   4021494.7189     409975.4401   4021479.1355     409886.0723   4021457.122     409835.6679   4021445.1413     409774.5213   4021445.1413     409774.5213   4021446.0422     409702.2970   4021445.4495     409667.1756   4021445.232     409628.6050   4021445.2633     409587.0138   4021477.5621     409503.814   4021477.5621     409409.1538   4021492.9143     409430.4700   4021510.7705     409394.2697   4021530.5798     409323.3516   4021579.8075 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 410350.3675 4021535.4504   410110.0532 4021493.3823   410079.1896 4021494.7189   409975.4401 4021479.1355   409886.0723 4021457.122   409835.6679 4021449.4157   409774.5213 4021449.4157   409774.5213 4021449.4157   409734.0450 4021446.0422   409702.2970 4021445.4495   40967.1756 4021445.232   40967.1756 4021445.2633   409587.0138 4021456.9762   40959.3814 4021477.5621   409469.1538 4021492.9143   409430.4700 4021510.7705   409394.2697 4021530.5798   409395.8403 4021552.6623   409323.3516 4021579.8075                                              |
| 410110.0532 4021493.3823   410079.1896 4021494.7189   409975.4401 4021479.1355   409886.0723 4021465.7122   409835.6679 4021458.1413   409774.5213 4021449.4157   409734.0450 4021449.4157   409702.2970 4021445.4495   409667.1756 4021445.232   409628.6050 4021450.2633   409587.0138 4021465.9762   409509.3814 4021477.5621   409409.1538 4021492.9143   409430.4700 4021510.7705   409394.2697 4021530.5798   409323.3516 4021579.8075                                                                                                                           |
| 410079.1896 4021494.7189   409975.4401 4021479.1355   409886.0723 4021465.7122   409835.6679 40214458.1413   409774.5213 4021449.4157   409734.0450 4021446.0422   409702.2970 4021445.4495   409667.1756 4021446.5232   409628.6050 4021450.2633   409587.0138 4021467.7021   409509.3814 4021477.5621   409469.1538 4021492.9143   409430.4700 4021510.7705   409323.3516 4021579.8075   409324.6311 4031604.3271                                                                                                                                                    |
| 409975.4401 4021479.1355   409886.0723 4021465.7122   409835.6679 4021458.1413   409774.5213 4021449.4157   409734.0450 4021446.0422   409702.2970 4021445.4495   409667.1756 4021445.232   409667.1756 4021445.2633   409587.0138 4021450.2633   409587.0138 4021467.7021   409509.3814 4021477.5621   409409.1538 4021492.9143   409430.4700 4021510.7705   409394.2697 4021552.6623   409323.3516 4021579.8075                                                                                                                                                      |
| 409886.0723 4021465.7122   409835.6679 4021458.1413   409774.5213 4021445.1413   409774.5213 4021449.4157   409702.2970 4021445.4495   409667.1756 4021445.232   409628.6050 4021450.2633   409587.0138 4021456.9762   409509.3814 4021477.5621   409469.1538 4021492.9143   409430.4700 4021510.7705   409359.8403 4021552.6623   409323.3516 4021579.8075                                                                                                                                                                                                            |
| 409835.6679 4021458.1413   409774.5213 4021449.4157   409734.0450 4021446.0422   409702.2970 4021445.4495   409667.1756 4021446.5232   409628.6050 4021450.2633   409587.0138 4021456.9762   409541.7453 4021477.5621   409509.3814 4021477.5621   409469.1538 4021492.9143   409394.2697 4021530.5798   409359.8403 4021552.6623   409323.3516 4021579.8075                                                                                                                                                                                                           |
| 409774.5213 4021449.4157   409734.0450 4021446.0422   409702.2970 4021445.4495   409667.1756 4021446.5232   409628.6050 4021450.2633   409587.0138 4021446.9762   409591.7453 4021467.7021   409509.3814 4021477.5621   409469.1538 4021492.9143   409430.4700 4021510.7705   409359.8403 4021552.6623   409323.3516 4021579.8075                                                                                                                                                                                                                                      |
| 409734.0450 4021446.0422   409702.2970 4021445.4495   409667.1756 4021446.5232   409628.6050 4021450.2633   409587.0138 4021456.9762   409541.7453 4021467.7021   409509.3814 4021477.5621   409469.1538 4021492.9143   409394.2697 4021510.7705   409359.8403 4021552.6623   409323.3516 4021579.8075                                                                                                                                                                                                                                                                 |
| 409702.2970 4021445.4495   409667.1756 4021446.5232   409628.6050 4021450.2633   409587.0138 4021456.9762   409509.3814 4021477.5621   409469.1538 4021492.9143   409394.2697 4021510.7705   409359.8403 4021522.6623   409323.3516 4021579.8075                                                                                                                                                                                                                                                                                                                       |
| 409667.1756 4021446.5232   409628.6050 4021450.2633   409587.0138 4021456.9762   409541.7453 4021467.7021   409509.3814 4021477.5621   409469.1538 4021492.9143   409304.2697 4021510.7705   409359.8403 4021522.6623   409323.3516 4021579.8075                                                                                                                                                                                                                                                                                                                       |
| 409628.6050 4021450.2633   409587.0138 4021456.9762   409541.7453 4021467.7021   409509.3814 4021477.5621   409469.1538 4021492.9143   409430.4700 4021510.7705   409394.2697 402152.6623   409323.3516 4021579.8075                                                                                                                                                                                                                                                                                                                                                   |
| 409587.0138 4021456.9762   409541.7453 4021467.7021   409509.3814 4021477.5621   409469.1538 4021492.9143   409430.4700 4021510.7705   409394.2697 4021530.5798   409323.3516 4021579.8075   409204.6211 4021604.2271                                                                                                                                                                                                                                                                                                                                                  |
| 409541.7453 4021467.7021   409509.3814 4021477.5621   409469.1538 4021492.9143   409430.4700 4021510.7705   409394.2697 4021530.5798   409323.3516 4021579.8075   409204.6211 4021604.2271                                                                                                                                                                                                                                                                                                                                                                             |
| 409509.3814 4021477.5621   409469.1538 4021492.9143   409430.4700 4021510.7705   409394.2697 4021530.5798   409323.3516 4021579.8075   409204.6211 4021604.2371                                                                                                                                                                                                                                                                                                                                                                                                        |
| 409469.1538 4021492.9143   409430.4700 4021510.7705   409394.2697 4021530.5798   409359.8403 4021552.6623   409323.3516 4021579.8075   409204.6211 4021604.2371                                                                                                                                                                                                                                                                                                                                                                                                        |
| 409430.4700   4021510.7705     409394.2697   4021530.5798     409359.8403   4021552.6623     409323.3516   4021579.8075                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 409394.2697   4021530.5798     409359.8403   4021552.6623     409323.3516   4021579.8075     409304.6311   4021604.3371                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 409359.8403   4021552.6623     409323.3516   4021579.8075     409304.6311   4021604.3371                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 409323.3516 4021579.8075<br>409204 6211 4021604 2271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 400204 6211 4021604 2271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 409273.6568 4021624.1573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 409252.5708 4021646.4477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 409225 4173 4021678 7661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 409209.7590 4021699.6128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 409194 6701 4021721 5470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 409179 6823 4021745 9744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 409163.9608 4021774.2357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 409149,2804 4021803,3442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 409108.8160 4021989.7821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 409094.0513 4022070.0886                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 409085.6763 4022117.5963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 409078.4606 4022146.7713                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 409062.7226 4022238.2376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 409046.0396 4022310.3637                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 409031.2722 4022390.1936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 409011.1297 4022508.5332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 408992.2636 4022598.4083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 408976.2034 4022678 3443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 408957.5809 4022750.2154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 408947.0031 4022786.7507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 408929.8478 4022830.1862                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 408906.8526 4022877.2718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 408890.4273 4022904.6472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 408861.2270 4022947.3527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 408845.1668 4022972.1731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 408798.0812 4023021.8137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| 2006 Dust Control Area |                 |             |              |  |
|------------------------|-----------------|-------------|--------------|--|
| Area ID                | Area (sq miles) | UTM X       | UTM Y        |  |
|                        |                 | 408749.6047 | 4023067.1420 |  |
|                        |                 | 408752.0708 | 4023250.6832 |  |
|                        |                 | 409002.0721 | 4023249.9209 |  |
|                        |                 | 408999.6293 | 4023000.2258 |  |
|                        |                 | 409150.1396 | 4022999.8884 |  |
|                        |                 | 410005.2363 | 4022997.9711 |  |
|                        |                 | 410002.3580 | 4023206.9595 |  |
|                        |                 | 410001.3479 | 4023280.2990 |  |
|                        |                 | 410254.3830 | 4023245.9717 |  |
|                        |                 | 410472.0427 | 4023123.1702 |  |
|                        |                 | 410517.8291 | 4023045.8856 |  |
| T1A-3                  | 0.79            | 411737.3086 | 4023824.9915 |  |
|                        |                 | 411856.6603 | 4023492.7197 |  |
|                        |                 | 411867.2652 | 4023463.2354 |  |
|                        |                 | 411784.7187 | 4023306.3704 |  |
|                        |                 | 411756.0765 | 4023263.9938 |  |
|                        |                 | 411733.8386 | 4023231.0923 |  |
|                        |                 | 411581.3611 | 4023006.5993 |  |
|                        |                 | 411460.7988 | 4022950.7106 |  |
|                        |                 | 411432.4438 | 4022937.5450 |  |
|                        |                 | 411126.7256 | 4022795.5958 |  |
|                        |                 | 411073.0277 | 4022641.9086 |  |
|                        |                 | 410994.3205 | 4022416.6426 |  |
|                        |                 | 410987.9078 | 4022252.4215 |  |
|                        |                 | 410517.8291 | 4023045.8856 |  |
|                        |                 | 410472.0427 | 4023123.1702 |  |
|                        |                 | 410717.9845 | 4023206.8910 |  |
|                        |                 | 410744.2155 | 4023238.1869 |  |
|                        |                 | 410777.7814 | 4023278.2340 |  |
|                        |                 | 410862.0902 | 4023378.8217 |  |
|                        |                 | 410821.5600 | 4023731.0035 |  |
|                        |                 | 410665.4241 | 4023862.7933 |  |
|                        |                 | 410559.0790 | 4023934.9698 |  |
|                        |                 | 410401.5722 | 4024041.8691 |  |
|                        |                 | 410411.4127 | 4024308.5175 |  |
|                        |                 | 410520.5786 | 4024349.2917 |  |
|                        |                 | 410692.6404 | 4024438.4529 |  |
|                        |                 | 410909.1814 | 4024550.6629 |  |
|                        |                 | 411162.2767 | 4024681.8151 |  |
|                        |                 | 411124.9240 | 4024778.6121 |  |
|                        |                 | 411222.3255 | 4024873.8035 |  |
|                        |                 | 411392.3945 | 4024792.1429 |  |
|                        |                 | 411607.7455 | 4024539.2489 |  |
|                        |                 | 411694.2835 | 4024061.5800 |  |
|                        |                 | 411737.3086 | 4023824.9915 |  |
| T1A-4                  | 0.96            | 414433.1201 | 4026063.8621 |  |
|                        | 0.00            | 414383.8825 | 4025998.0971 |  |
| I                      | 1               | 1           |              |  |

| Area ID       | Area (so miles) | UTM X        | UTM Y        |
|---------------|-----------------|--------------|--------------|
| Alcalb        | Area (sq miles) | 414275 2628  | 4025680 9863 |
|               |                 | 414253 5442  | 4025500.5005 |
|               |                 | 11/2/19 7773 | 4025525.5551 |
|               |                 | 414245.7775  | 4025450.0255 |
|               |                 | 414200.7145  | 4025375.7117 |
|               |                 | 414203.0270  | 4025521.0056 |
|               |                 | 414234.3783  | 4025276.7405 |
|               |                 | 414210.4545  | 4025245.9289 |
|               |                 | 413520.9060  | 4024987.7652 |
|               |                 | 413307.2567  | 4025145.6105 |
|               |                 | 413068.1384  | 4024822.1295 |
|               |                 | 413005.9543  | 4024737.9616 |
|               |                 | 412829.1735  | 4024498.6832 |
|               |                 | 412716.3209  | 4024345.9798 |
|               |                 | 412590.0541  | 4024175.1253 |
|               |                 | 412393.1732  | 4023908.6402 |
|               |                 | 412351.0895  | 4023851.6783 |
|               |                 | 412316.2796  | 4023804.5494 |
|               |                 | 412114.1288  | 4023531.1972 |
|               |                 | 411987.3569  | 4023709.3450 |
|               |                 | 411915.0878  | 4023883.7727 |
|               |                 | 411828.1298  | 4024594.2291 |
|               |                 | 411987.9741  | 4025141.2709 |
|               |                 | 412161.8337  | 4025254.5966 |
|               |                 | 412387.4889  | 4025234.3186 |
|               |                 | 412577.2692  | 4025175.8075 |
|               |                 | 412752.8915  | 4025413.6926 |
|               |                 | 412942.5931  | 4025667.2112 |
|               |                 | 413140.6925  | 4025804.2789 |
|               |                 | 413273.7478  | 4025896.3417 |
|               |                 | 413298.0623  | 4025913.1653 |
|               |                 | 413700.6748  | 4025878.0963 |
|               |                 | 413843.4527  | 4025859.0182 |
|               |                 | 413892 4598  | 4025869 0491 |
|               |                 | 414047 8003  | 4025981 4887 |
|               |                 | 414054 0898  | 4025986 0412 |
|               |                 | 414058 1609  | 4025988.0412 |
|               |                 | 414038.1005  | 4025588.5880 |
|               |                 | 414103.5500  | 4020021.7204 |
|               |                 | 414202.3230  | 4020100.5500 |
|               |                 | 414257.0001  | 4020130.3977 |
|               |                 | 414200.0023  | 4020170.7292 |
| TO 1 Addition | 0.20            | 414433.1201  | 4020003.0021 |
| 12-1 Addition | 0.29            | 410023.1391  | 4019002.0354 |
|               |                 | 403353.8384  | 4010000 0000 |
|               |                 | 409535.7940  | 4010007 2014 |
|               |                 | 409535./335  | 4019007.2814 |
|               |                 | 409535.4202  | 4019044.9991 |
| l             | 1               | 409535.2790  | 4019062.0029 |

| 2006 Dust Control Area |                 |             |              |
|------------------------|-----------------|-------------|--------------|
| Area ID                | Area (sq miles) | UTM X       | UTM Y        |
|                        |                 | 409535.2630 | 4019063.9333 |
|                        |                 | 409534.8572 | 4019112.7819 |
|                        |                 | 409500.0000 | 4019229.7137 |
|                        |                 | 409493.9270 | 4019250.0862 |
|                        |                 | 409428.6436 | 4019253.2063 |
|                        |                 | 409374.7338 | 4019259.9508 |
|                        |                 | 409302.2554 | 4019299.7625 |
|                        |                 | 409272.1768 | 4019316.2843 |
|                        |                 | 409240.1576 | 4019333.8721 |
|                        |                 | 409219.4108 | 4019347.7120 |
|                        |                 | 409207.4586 | 4019355.6851 |
|                        |                 | 409207.5174 | 4019364.3380 |
|                        |                 | 409208.2558 | 4019473.1115 |
|                        |                 | 409435.8230 | 4019902.2959 |
|                        |                 | 409445.4661 | 4019983.4003 |
|                        |                 | 409576.6128 | 4020126.1299 |
|                        |                 | 409630.4774 | 4020144.7287 |
|                        |                 | 409689.8168 | 4020165.2179 |
|                        |                 | 410021.5195 | 4020289.5251 |
|                        |                 | 410025.1591 | 4019002.0354 |
| T5-1 Addition          | 0.03            | 414429.2165 | 4020500.8382 |
|                        |                 | 414464.0586 | 4020432.0182 |
|                        |                 | 414293.7162 | 4020338.7319 |
|                        |                 | 414135.9213 | 4020279.6763 |
|                        |                 | 414001.2533 | 4020257.4915 |
|                        |                 | 414001.4695 | 4020502.4758 |
|                        |                 | 414232.1268 | 4020501.5982 |
|                        |                 | 414429.2165 | 4020500.8382 |
| T5-3 Addition          | 0.12            | 415656.1628 | 4022910.0892 |
|                        |                 | 415704.1714 | 4022874.5914 |
|                        |                 | 415815.3044 | 4022792.4623 |
|                        |                 | 415748.1977 | 4022764.6488 |
|                        |                 | 415699.5372 | 4022723.3612 |
|                        |                 | 415670.0461 | 4022679.1244 |
|                        |                 | 415672.9952 | 4022639.3114 |
|                        |                 | 415650.8768 | 4022577.3799 |
|                        |                 | 415643.2259 | 4022531.0919 |
|                        |                 | 415621.3856 | 4022398.9584 |
|                        |                 | 415574.1998 | 4022322.2813 |
|                        |                 | 415529.9630 | 4022266.2481 |
|                        |                 | 415496.0482 | 4022202.8421 |
|                        |                 | 415434.1167 | 4022145.3343 |
|                        |                 | 415404.6256 | 4022093.7248 |
|                        |                 | 415361.8634 | 4022096.6739 |
|                        |                 | 415302.8811 | 4022046.5389 |
|                        |                 | 415242.8901 | 4022005.1797 |
|                        |                 | 414989.6965 | 4022007.9919 |

| 2006 Dust Control Area |                 |             |              |
|------------------------|-----------------|-------------|--------------|
| Area ID                | Area (sq miles) | UTM X       | UTM Y        |
|                        |                 | 415146.6854 | 4022220.5223 |
|                        |                 | 415178.1078 | 4022263.0525 |
|                        |                 | 415148.1754 | 4022285.3898 |
|                        |                 | 415106.6480 | 4022323.0048 |
|                        |                 | 415127.4250 | 4022351.2549 |
|                        |                 | 415192.7623 | 4022439.6891 |
|                        |                 | 415380.8866 | 4022694.3156 |
|                        |                 | 415520.5385 | 4022883.3346 |
|                        |                 | 415580.7123 | 4022964.7690 |
|                        |                 | 415622.4090 | 4022934.9994 |
|                        |                 | 415656.1628 | 4022910.0892 |
| T10-1                  | 0.70            | 417483.0867 | 4026061.2172 |
|                        |                 | 417363.5983 | 4025899.4766 |
|                        |                 | 417848.8505 | 4025540.9244 |
|                        |                 | 417965.0399 | 4025698.1844 |
|                        |                 | 418087.8706 | 4025864.4329 |
|                        |                 | 418250.0503 | 4025745.2361 |
|                        |                 | 417981.0900 | 4025483.1796 |
|                        |                 | 417862.3542 | 4025432.8305 |
|                        |                 | 417742.6529 | 4025357.7897 |
|                        |                 | 417731.0963 | 4025299.8718 |
|                        |                 | 417711.4790 | 4025042.9035 |
|                        |                 | 417596.8590 | 4024857.0344 |
|                        |                 | 417427.9719 | 4024735.2047 |
|                        |                 | 417308.1869 | 4024673.9089 |
|                        |                 | 417192.2023 | 4024288.3952 |
|                        |                 | 417038.6920 | 4023907.3688 |
|                        |                 | 416987.0241 | 4023427.0505 |
|                        |                 | 416791.8080 | 4023571.3270 |
|                        |                 | 416724.9459 | 4023638.9524 |
|                        |                 | 416700.3078 | 4023672.4212 |
|                        |                 | 416681.7283 | 4023739.4429 |
|                        |                 | 416644.2056 | 4023924.8115 |
|                        |                 | 416740.4644 | 4024114.1911 |
|                        |                 | 416773.5777 | 4024179.3380 |
|                        |                 | 417009.4547 | 4024643.4367 |
|                        |                 | 417001.1420 | 4024947.4364 |
|                        |                 | 416999.8010 | 4024996.4655 |
|                        |                 | 416423.1407 | 4025002.1395 |
|                        |                 | 416222.2418 | 4025004.5422 |
|                        |                 | 416940.2572 | 4025981.7598 |
|                        |                 | 417170.2116 | 4026293.6483 |
|                        |                 | 417366.8592 | 4026147.0905 |
|                        |                 | 417483.0867 | 4026061.2172 |
| T10-2                  | 1.39            | 415752.1670 | 4024382.2273 |
|                        |                 | 415721.8772 | 4024363.7439 |
|                        |                 | 415402.7156 | 4024597.6328 |
| •                      | •               | •           | •            |

| 2006 Dust Control Area |                 |             |              |  |
|------------------------|-----------------|-------------|--------------|--|
| Area ID                | Area (sq miles) | UTM X       | UTM Y        |  |
|                        |                 | 415225.2485 | 4024728.7512 |  |
|                        |                 | 415079.1212 | 4024836.7146 |  |
|                        |                 | 414987.6679 | 4024904.2813 |  |
|                        |                 | 414755.6684 | 4025075.7084 |  |
|                        |                 | 414828.4698 | 4025174.2710 |  |
|                        |                 | 414875.1490 | 4025237.4744 |  |
|                        |                 | 414714.1101 | 4025356.9862 |  |
|                        |                 | 414832.3590 | 4025517.9893 |  |
|                        |                 | 415640.1630 | 4026578.7438 |  |
|                        |                 | 415677.0319 | 4026634.4934 |  |
|                        |                 | 415790.4216 | 4026811.2579 |  |
|                        |                 | 415850.0994 | 4026904.2901 |  |
|                        |                 | 415892.7261 | 4026970.7408 |  |
|                        |                 | 416016.5518 | 4027163.7735 |  |
|                        |                 | 416307.8668 | 4027358.6501 |  |
|                        |                 | 416425.8276 | 4026988.5600 |  |
|                        |                 | 416674.9793 | 4026748.4247 |  |
|                        |                 | 417122.8974 | 4026577.3922 |  |
|                        |                 | 417289.1233 | 4026454.5769 |  |
|                        |                 | 417170.2116 | 4026293.6483 |  |
|                        |                 | 416940.2572 | 4025981.7598 |  |
|                        |                 | 416222.2418 | 4025004.5422 |  |
|                        |                 | 415795.7936 | 4024428.4142 |  |
|                        |                 | 415752.1670 | 4024382.2273 |  |
| T10-3                  | 0.44            | 415640.1630 | 4026578.7438 |  |
|                        |                 | 414832.3590 | 4025517.9893 |  |
|                        |                 | 414573.9046 | 4025710.0958 |  |
|                        |                 | 414509.4040 | 4025757.7501 |  |
|                        |                 | 414592.2070 | 4025869.8256 |  |
|                        |                 | 414628.9092 | 4025919.5013 |  |
|                        |                 | 414516.2449 | 4026002.5719 |  |
|                        |                 | 414433.1201 | 4026063.8621 |  |
|                        |                 | 414280.6829 | 4026176.7292 |  |
|                        |                 | 414294.0026 | 4026188.3743 |  |
|                        |                 | 414361.5358 | 4026256.8825 |  |
|                        |                 | 414364.4695 | 4026259.8586 |  |
|                        |                 | 414468.2236 | 4026365.1107 |  |
|                        |                 | 414474.4641 | 4026371.4413 |  |
|                        |                 | 414521.1467 | 4026419.0833 |  |
|                        |                 | 414574.5451 | 4026473.5792 |  |
|                        |                 | 414575.1058 | 4026474.4055 |  |
|                        |                 | 414580.1326 | 4026481.8134 |  |
|                        |                 | 414581.3692 | 4026483.6358 |  |
|                        |                 | 414626.7335 | 4026550.4892 |  |
|                        |                 | 414628.2736 | 4026552.7589 |  |
|                        |                 | 414777.6428 | 4026862.0020 |  |
|                        |                 | 414809.4765 | 4026927.9082 |  |

| 2006 Dust Control Area |                 |             |              |
|------------------------|-----------------|-------------|--------------|
| Area ID                | Area (sq miles) | UTM X       | UTM Y        |
|                        |                 | 414946.7384 | 4027212.0856 |
|                        |                 | 414946.8125 | 4027212.2390 |
|                        |                 | 415156.5509 | 4027188.1773 |
|                        |                 | 415233.1529 | 4027179.3891 |
|                        |                 | 415303.7796 | 4027171.2685 |
|                        |                 | 415340.1072 | 4027066.6946 |
|                        |                 | 415342.4782 | 4027059.9901 |
|                        |                 | 415466.7219 | 4026708.6625 |
|                        |                 | 415640.1630 | 4026578.7438 |
| T12-1                  | 0.34            | 417123.5860 | 4027916.7888 |
|                        |                 | 417084.6434 | 4027863.9835 |
|                        |                 | 417168.0579 | 4027307.0306 |
|                        |                 | 417084.2094 | 4026850.3179 |
|                        |                 | 417122.8974 | 4026577.3922 |
|                        |                 | 416674,9793 | 4026748.4247 |
|                        |                 | 416425.8276 | 4026988.5600 |
|                        |                 | 416307 8668 | 4027358 6501 |
|                        |                 | 416380 4537 | 4027677 3045 |
|                        |                 | 416356 7395 | 4027801 5013 |
|                        |                 | 416/12 /399 | 4027801.3013 |
|                        |                 | 410412.4555 | 4027012.1507 |
|                        |                 | 410443.8240 | 4027952.8050 |
| T12 1 Addition         | 0.12            | 417125.5800 | 4027910.7888 |
| 113-1 Addition         | 0.12            | 419904.9301 | 4027727.3417 |
|                        |                 | 419949.0210 | 4027059.1454 |
|                        |                 | 419887.7273 | 4027284.9795 |
|                        |                 | 419880.3754 | 4027234.3219 |
|                        |                 | 419832.8927 | 4026984.5659 |
|                        |                 | 419810.2777 | 4026841.6888 |
|                        |                 | 419499.9094 | 4025999.3318 |
|                        |                 | 419182.9598 | 4025925.2840 |
|                        |                 | 418812.4327 | 4025829.9087 |
|                        |                 | 418720.4393 | 4025816.9724 |
|                        |                 | 418530.6017 | 4025787.6073 |
|                        |                 | 418422.7811 | 4025775.2222 |
|                        |                 | 418250.0503 | 4025745.2361 |
|                        |                 | 418369.1355 | 4025906.6763 |
|                        |                 | 418530.6017 | 4025787.6073 |
|                        |                 | 418650.4050 | 4025948.9162 |
|                        |                 | 418812.4327 | 4025829.9087 |
|                        |                 | 418944.5404 | 4026008.5914 |
|                        |                 | 419051.1767 | 4026152.9153 |
|                        |                 | 419206.2888 | 4026038.3123 |
|                        |                 | 419499.4993 | 4026420.9158 |
|                        |                 | 419525.0923 | 4026455.4515 |
|                        |                 | 419748.5558 | 4026757.6663 |
|                        |                 | 419810.2777 | 4026841.6888 |
|                        |                 | 419648 9217 | 4026961 5818 |

| Area ID | Area (so miles) | UTM X       | UTM Y        |
|---------|-----------------|-------------|--------------|
|         |                 | 419887.7273 | 4027284.9795 |
|         |                 | 419726.2673 | 4027404.5246 |
|         |                 | 419815.0913 | 4027525.2967 |
|         |                 | 419964.9561 | 4027727.9417 |
| T16     | 1.68            | 419084.5984 | 4029747.7702 |
| •       |                 | 419093.6209 | 4029564.0366 |
|         |                 | 418540.1609 | 4029396.3602 |
|         |                 | 418492.0331 | 4029381.7793 |
|         |                 | 417887.8942 | 4029186.5402 |
|         |                 | 418000 2288 | 4028968 8521 |
|         |                 | 417985 8357 | 4028530 6268 |
|         |                 | 417876 9859 | 4028548 4822 |
|         |                 | 417827 9025 | 4028557 0432 |
|         |                 | 417545 6899 | 4028513 6273 |
|         |                 | 417345.0055 | 4020313.0273 |
|         |                 | 417123 5860 | 4027916 7888 |
|         |                 | 417125.5800 | 4027052 8626 |
|         |                 | 410445.8240 | 4027952.8050 |
|         |                 | 410412.4399 | 4027812.1307 |
|         |                 | 410330.7393 | 4027801.3013 |
|         |                 | 410300.4337 | 4027077.3043 |
|         |                 | 410307.0008 | 4027536.0301 |
|         |                 | 410010.5516 | 402/105.//55 |
|         |                 | 415955.5124 | 4027208.8937 |
|         |                 | 415829.9319 | 4027301.7160 |
|         |                 | 415821.2552 | 4027472.5544 |
|         |                 | 415819.5445 | 4027506.2313 |
|         |                 | 415815.0825 | 4027594.0878 |
|         |                 | 415812.0017 | 402/654.7770 |
|         |                 | 415987.3754 | 4028348.7866 |
|         |                 | 415969.6875 | 4028562.7110 |
|         |                 | 415530.3795 | 4028446.4469 |
|         |                 | 415660.2354 | 4028955.4660 |
|         |                 | 416062.8635 | 4029458.0553 |
|         |                 | 416338.7305 | 4029650.8434 |
|         |                 | 416414.3687 | 4029700.9180 |
|         |                 | 4164/7.5638 | 4029742.9928 |
|         |                 | 416497.9138 | 4029756.5417 |
|         |                 | 416520.7968 | 4029773.4766 |
|         |                 | 416520.8264 | 4029773.4985 |
|         |                 | 416501.9688 | 4029786.2637 |
|         |                 | 416489.6563 | 4029794.9004 |
|         |                 | 416430.1250 | 4029834.6543 |
|         |                 | 416415.3750 | 4029843.4570 |
|         |                 | 416400.7188 | 4029849.4766 |
|         |                 | 416387.3125 | 4029856.1563 |
|         |                 | 416372.5938 | 4029860.3106 |
|         |                 | 416368.5313 | 4029870.0703 |

| 416375.7813   4029880.6270     416384.4688   4029895.7617     416385.5313   4029910.9023     416395.3125   4029918.6622     416406.0625   4029922.9727 |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 416384.4688 4029895.761   416385.5313 4029910.9023   416395.3125 4029918.6623   416406.0625 4029922.9723                                               |   |
| 416385.5313 4029910.9023   416395.3125 4029918.6623   416406.0625 4029922.9723                                                                         |   |
| 416395.3125 4029918.662<br>416406.0625 4029922.972                                                                                                     |   |
| 416406.0625 4029922.972                                                                                                                                | , |
|                                                                                                                                                        |   |
| 416419.9063 4029929.8086                                                                                                                               |   |
| 416435.1563 4029936.6543                                                                                                                               |   |
| 416449.2500 4029947.3340                                                                                                                               |   |
| 416459.1250 4029961.2246                                                                                                                               | ; |
| 416462.9688 4029976.8418                                                                                                                               |   |
| 416471.5625 4029988.3965                                                                                                                               |   |
| 416481.0000 4029994.3359                                                                                                                               |   |
| 416483.2500 4030000.4590                                                                                                                               |   |
| 416476.4688 4030004.0684                                                                                                                               |   |
| 416464.6250 4030013.5332                                                                                                                               |   |
| 416452.1250 4030020.7260                                                                                                                               |   |
| 416447.3125 4030031.0762                                                                                                                               |   |
| 416454.8750 4030042.8809                                                                                                                               |   |
| 416467.7500 4030052.9766                                                                                                                               |   |
| 416466.0625 4030067.603                                                                                                                                |   |
| 416454,5313 4030077,558                                                                                                                                |   |
| 416440.6250 4030076.0938                                                                                                                               |   |
| 416437.6250 4030084.6914                                                                                                                               |   |
| 416445.8125 4030098.3490                                                                                                                               |   |
| 416459.0313 4030110.687                                                                                                                                |   |
| 416465.9063 4030126.048                                                                                                                                |   |
| 416467.1563 4030142.787                                                                                                                                |   |
| 416461.5313 4030157.152                                                                                                                                |   |
| 416450.1563 4030168.0938                                                                                                                               |   |
| 416439.0938 4030177.2402                                                                                                                               |   |
| 416443.8750 4030188.722                                                                                                                                | , |
| 416458.4375 4030192.3809                                                                                                                               |   |
| 416470.3125 4030190.8789                                                                                                                               |   |
| 416479.0313 4030177.972                                                                                                                                | , |
| 416493.8125 4030171.263                                                                                                                                | , |
| 416510.6250 4030166.2656                                                                                                                               | ; |
| 416527.2188 4030165.8828                                                                                                                               |   |
| 416541.7813 4030161.9238                                                                                                                               |   |
| 416568.0625 4030143.394                                                                                                                                |   |
| 416585.0000 4030137.328                                                                                                                                |   |
| 416601.6250 4030130.7734                                                                                                                               |   |
| 416608.7188 4030112.7188                                                                                                                               |   |
| 416614.8750 4030093.7324                                                                                                                               |   |
| 416614.1563 4030081.136                                                                                                                                | , |
| 416606.9688 4030057.0176                                                                                                                               |   |
| 416610.2813 4030041.6328                                                                                                                               |   |
| 416621.0313 4030029.7910                                                                                                                               | ) |

| Area ID |                  |             |               |
|---------|------------------|-------------|---------------|
| Aled ID | Area (sy filles) | 116626 8428 | 4030016 4402  |
|         |                  | 416634 6563 | 40300010.4492 |
|         |                  | 410034.0503 | 4030003.4803  |
|         |                  | 410059.0505 | 4029966.0275  |
|         |                  | 410042.2500 | 4029973.2070  |
|         |                  | 410000.7188 | 4029972.4727  |
|         |                  | 410088.3750 | 4029977.5293  |
|         |                  | 416704.9375 | 4029976.5762  |
|         |                  | 416/15.9688 | 4029964.5742  |
|         |                  | 416/23.1250 | 4029949.7949  |
|         |                  | 416734.4688 | 4029937.7109  |
|         |                  | 416747.7188 | 4029929.2070  |
|         |                  | 416759.0313 | 4029916.4004  |
|         |                  | 416768.4688 | 4029902.2207  |
|         |                  | 416781.8125 | 4029898.3633  |
|         |                  | 416790.3750 | 4029900.3945  |
|         |                  | 416827.0938 | 4029907.2129  |
|         |                  | 416838.2500 | 4029915.7813  |
|         |                  | 416845.7500 | 4029917.9492  |
|         |                  | 416852.5938 | 4029916.0938  |
|         |                  | 416867.9688 | 4029916.1543  |
|         |                  | 416880.3438 | 4029917.7637  |
|         |                  | 416895.6875 | 4029914.7402  |
|         |                  | 416933.2774 | 4029903.9416  |
|         |                  | 416933.3437 | 4029903.9482  |
|         |                  | 416960.6093 | 4029911.0537  |
|         |                  | 417119.3092 | 4029946.7131  |
|         |                  | 417187.5882 | 4029971.9062  |
|         |                  | 417307.5528 | 4030061.9091  |
|         |                  | 417404.8087 | 4030134.8752  |
|         |                  | 417581.9086 | 4030267.7438  |
|         |                  | 417521.5049 | 4029776.4691  |
|         |                  | 417653.3789 | 4029674.6594  |
|         |                  | 417699.9538 | 4029667.9768  |
|         |                  | 417771.7107 | 4029657.7122  |
|         |                  | 417852.8347 | 4029647.5471  |
|         |                  | 418130.4116 | 4029646.0180  |
|         |                  | 418383.2186 | 4029647.0736  |
|         |                  | 419084.5984 | 4029747.7702  |
| T17-1   | 0.83             | 420796.0648 | 4029098,4398  |
| / .     | 0.00             | 420658.2965 | 4029205.3010  |
|         |                  | 420395 6316 | 4030679 8608  |
|         |                  | 420485 2029 | 4030805 0886  |
|         |                  | 420995 8461 | 4031495 0315  |
|         |                  | 421054 3411 | 4031574 3940  |
|         |                  | 421004.0411 | 4031769 2300  |
|         |                  | 421205.7512 | 4031663 00//  |
|         |                  | 421230.00/0 | 4031003.3344  |
| I       | 1                | 421331.3889 | 4051025.3209  |

| 2006 Dust Control Area |                 |               |              |
|------------------------|-----------------|---------------|--------------|
| Area ID                | Area (sq miles) | UTM X         | UTM Y        |
|                        |                 | 421366.6346   | 4031583.9002 |
|                        |                 | 421439.1082   | 4031498.2427 |
|                        |                 | 421548.5165   | 4031333.2213 |
|                        |                 | 421631.0272   | 4031208.7695 |
|                        |                 | 421622.9727   | 4031054.6596 |
|                        |                 | 421571.8926   | 4030077.3204 |
|                        |                 | 421549.0082   | 4029833.7401 |
|                        |                 | 421523.2951   | 4029607.1388 |
|                        |                 | 421241.1573   | 4029607.9067 |
|                        |                 | 421115.9541   | 4029457.7723 |
|                        |                 | 420796.0648   | 4029098.4398 |
| T17-2                  | 0.93            | 420796.0648   | 4029098.4398 |
|                        |                 | 420776.0445   | 4029075.9509 |
|                        |                 | 420233.8289   | 4028421.8006 |
|                        |                 | 420070.9764   | 4028193.2976 |
|                        |                 | 419973.2496   | 4027978.3517 |
|                        |                 | 419964.9561   | 4027727.9417 |
|                        |                 | 419853.4559   | 4027810.6655 |
|                        |                 | 419803.4484   | 4027847.6038 |
|                        |                 | 419922.7917   | 4028009.4868 |
|                        |                 | 419437.6778   | 4028367.7751 |
|                        |                 | 419318.0047   | 4028206.2594 |
|                        |                 | 418994.5143   | 4028445.2593 |
|                        |                 | 418940.0949   | 4028435.3170 |
|                        |                 | 418725.6089   | 4028396.0970 |
|                        |                 | 418756.9252   | 4028433.4718 |
|                        |                 | 419406.8125   | 4029323.4179 |
|                        |                 | 419775.3475   | 4029819.8899 |
|                        |                 | 419798.7906   | 4029851.3951 |
|                        |                 | 419822.9960   | 4029884.0794 |
|                        |                 | 420257.4813   | 4030470.7618 |
|                        |                 | 420270.2682   | 4030504.5926 |
|                        |                 | 420395.6316   | 4030679.8608 |
|                        |                 | 420658.2965   | 4029205.3010 |
|                        |                 | 420796.0648   | 4029098.4398 |
| T18-0                  | 0.53            | 420597.1630   | 4032558.7211 |
|                        |                 | 420754.8980   | 4032462.5738 |
|                        |                 | 420847.2185   | 4032406.3000 |
|                        |                 | 421000.8019   | 4032283.7380 |
|                        |                 | 421144.0336   | 4032169.4369 |
|                        |                 | 421339.4293   | 4032013.5080 |
|                        |                 | 421363.7119   | 4031994.1301 |
|                        |                 | 421363.6591   | 4031994.0530 |
|                        |                 | 421332.6602   | 4031948.7768 |
|                        |                 | 421209.7312   | 4031769.2300 |
|                        |                 | 421054.3411   | 4031574.3940 |
|                        |                 | 420995 8461   | 4031495 0315 |
|                        | 1               | 1 720555.0401 | +031+33.0313 |

| 2006 Dust Control Area |                 |             |              |
|------------------------|-----------------|-------------|--------------|
| Area ID                | Area (sq miles) | UTM X       | UTM Y        |
|                        |                 | 420485.2029 | 4030805.0886 |
|                        |                 | 420395.6316 | 4030679.8608 |
|                        |                 | 420270.2682 | 4030504.5926 |
|                        |                 | 420100.9126 | 4030629.4127 |
|                        |                 | 419953.0593 | 4030737.6865 |
|                        |                 | 420067.1527 | 4030907.7868 |
|                        |                 | 420051.6551 | 4031073.7611 |
|                        |                 | 420102.1497 | 4031215.3678 |
|                        |                 | 420132.5084 | 4031300.4919 |
|                        |                 | 420174.1314 | 4031339.0630 |
|                        |                 | 420460.8875 | 4031607.1656 |
|                        |                 | 420448.8685 | 4032104.3398 |
|                        |                 | 420425.7541 | 4032122.7085 |
|                        |                 | 420133.8016 | 4032354.8284 |
|                        |                 | 419976.1285 | 4032480.3898 |
|                        |                 | 420091.3942 | 4032635.9359 |
|                        |                 | 420399.6558 | 4032679.1114 |
|                        |                 | 420597.1630 | 4032558.7211 |
| T18N Addition          | 0.03            | 420004.5740 | 4034139.6849 |
|                        |                 | 420012.6570 | 4033690.4716 |
|                        |                 | 419802.4606 | 4033687.7767 |
|                        |                 | 419832.6228 | 4034141.1372 |
|                        |                 | 420004.5740 | 4034139.6849 |
| T21                    | 0.49            | 422592.2681 | 4031994.7888 |
|                        |                 | 422592.1981 | 4031994.7332 |
|                        |                 | 422355.2617 | 4031806.6465 |
|                        |                 | 422299.6378 | 4031762.4906 |
|                        |                 | 422105.2825 | 4031749.0183 |
|                        |                 | 421855.0233 | 4031871.3901 |
|                        |                 | 421952.1081 | 4032442.4394 |
|                        |                 | 421827.2288 | 4032498.3566 |
|                        |                 | 421765.7569 | 4032526.0855 |
|                        |                 | 421758.8199 | 4032529.2147 |
|                        |                 | 421672.6950 | 4032568.0642 |
|                        |                 | 421669.5739 | 4032583.9514 |
|                        |                 | 421642.8450 | 4032720.0067 |
|                        |                 | 421615.4529 | 4032859.4383 |
|                        |                 | 421680.5833 | 4033146.5036 |
|                        |                 | 421959.4881 | 4033044.5656 |
|                        |                 | 422031.2822 | 4033112.9606 |
|                        |                 | 422103.3088 | 4033191.3140 |
|                        |                 | 422274.9333 | 4033248.8166 |
|                        |                 | 422331.3994 | 4033437.2447 |
|                        |                 | 422451.8434 | 4033492.2605 |
|                        |                 | 422530.2048 | 4033470.0379 |
|                        |                 | 422579.0949 | 4033430.6750 |
| 1                      |                 | 422659.7524 | 4033313.9588 |

| 2006 Dust Control Area |                 |             |              |  |
|------------------------|-----------------|-------------|--------------|--|
| Area ID                | Area (sq miles) | UTM X       | UTM Y        |  |
|                        |                 | 422698.7244 | 4033173.2549 |  |
|                        |                 | 422688.1222 | 4032830.0374 |  |
|                        |                 | 422701.7643 | 4032367.5270 |  |
|                        |                 | 422592.2681 | 4031994.7888 |  |
| T23-5                  | 0.31            | 419223.1494 | 4034342.8214 |  |
|                        |                 | 419141.4448 | 4034271.8118 |  |
|                        |                 | 419084.1419 | 4033110.8123 |  |
|                        |                 | 418754.0253 | 4033026.4824 |  |
|                        |                 | 418552.8969 | 4033287.6994 |  |
|                        |                 | 418483.9471 | 4033621.1100 |  |
|                        |                 | 418689.0409 | 4034066.4152 |  |
|                        |                 | 418529.1039 | 4034424.5053 |  |
|                        |                 | 418665.8457 | 4034527.9245 |  |
|                        |                 | 419064.9605 | 4034610.8362 |  |
|                        |                 | 419188.9454 | 4034400.9790 |  |
|                        |                 | 419223.1494 | 4034342.8214 |  |
| T25-3                  | 0.26            | 417974.8683 | 4036933.5367 |  |
|                        |                 | 418192.9713 | 4036174.1094 |  |
|                        |                 | 418665.8457 | 4034527.9245 |  |
|                        |                 | 418529.1039 | 4034424.5053 |  |
|                        |                 | 418434.8263 | 4034452.0750 |  |
|                        |                 | 418325.1939 | 4034653.5406 |  |
|                        |                 | 418224.8453 | 4034845.3287 |  |
|                        |                 | 418067.8080 | 4035047.7803 |  |
|                        |                 | 417953.2284 | 4035467.5065 |  |
|                        |                 | 417980.4697 | 4035865.3136 |  |
|                        |                 | 418027.8561 | 4036319.6127 |  |
|                        |                 | 417976.7952 | 4036709.7435 |  |
|                        |                 | 417940.1967 | 4036989.3746 |  |
|                        |                 | 417924.4340 | 4037108.4563 |  |
|                        |                 | 417974.8683 | 4036933.5367 |  |
| T32-1                  | 0.18            | 416020.8582 | 4042568.1991 |  |
|                        |                 | 416020.5077 | 4042551.3401 |  |
|                        |                 | 416020.1409 | 4042533.6930 |  |
|                        |                 | 416018.9905 | 4042478.3471 |  |
|                        |                 | 416015.9120 | 4042330.2460 |  |
|                        |                 | 415869.3630 | 4042338.0433 |  |
|                        |                 | 415692.3612 | 4042371.6124 |  |
|                        |                 | 415686.0509 | 4042382.4209 |  |
|                        |                 | 415685.9013 | 4042382.6772 |  |
|                        |                 | 415685.2178 | 4042383.8480 |  |
|                        |                 | 415542.5045 | 4042628.2931 |  |
|                        |                 | 415466.1135 | 4042759.1388 |  |
|                        |                 | 415360.9503 | 4042939.2666 |  |
|                        |                 | 415325.3619 | 4043000.2238 |  |
|                        |                 | 415316.6838 | 4043015.0880 |  |
|                        |                 | 415532.3824 | 4043014.2631 |  |

| 2006 Dust Control Area |                 |               |              |  |
|------------------------|-----------------|---------------|--------------|--|
| Area ID                | Area (sq miles) | UTM X         | UTM Y        |  |
|                        |                 | 415696.9669   | 4043207.9327 |  |
|                        |                 | 415863.2633   | 4043403.6167 |  |
|                        |                 | 415996.8507   | 4043320.6666 |  |
|                        |                 | 416009.4278   | 4043312.8570 |  |
|                        |                 | 416010.8609   | 4043237.9573 |  |
|                        |                 | 416010.8619   | 4043237.9058 |  |
|                        |                 | 416011.6310   | 4043197.7108 |  |
|                        |                 | 416012.4067   | 4043157.1705 |  |
|                        |                 | 416019.1461   | 4042804.9417 |  |
|                        |                 | 416021.5536   | 4042625.6378 |  |
|                        |                 | 416021.7492   | 4042611.0661 |  |
|                        |                 | 416021.3865   | 4042593.6171 |  |
|                        |                 | 416021.0826   | 4042578.9943 |  |
|                        |                 | 416020.8582   | 4042568.1991 |  |
| T36-3 Addition         | 0.03            | 414550.5526   | 4039224.6348 |  |
|                        |                 | 414548.2365   | 4039274.9161 |  |
|                        |                 | 414537.5701   | 4039498.0063 |  |
|                        |                 | 414528.0492   | 4039697.5872 |  |
|                        |                 | 414532.4404   | 4039758.0190 |  |
|                        |                 | 414583.4212   | 4039699.2761 |  |
|                        |                 | 414643.2559   | 4039605.6218 |  |
|                        |                 | 414700.4892   | 4039498.9600 |  |
|                        |                 | 414718.6997   | 4039441.7268 |  |
|                        |                 | 414729.1056   | 4039314.2529 |  |
|                        |                 | 414747.2438   | 4039109.5495 |  |
|                        |                 | 414550.5526   | 4039224.6348 |  |
| T37-1                  | 0.21            | 408316.4774   | 4042459.9838 |  |
|                        |                 | 408338.8360   | 4042445.5751 |  |
|                        |                 | 408346.9908   | 4042440.3199 |  |
|                        |                 | 408347.0668   | 4042402.6597 |  |
|                        |                 | 408347.9558   | 4041961.9434 |  |
|                        |                 | 408348.0616   | 4041909.5004 |  |
|                        |                 | 408348.9029   | 4041492.4725 |  |
|                        |                 | 408268.2287   | 4041492.7310 |  |
|                        |                 | 408159.1942   | 4041493.0803 |  |
|                        |                 | 408085.5117   | 4041493.3164 |  |
|                        |                 | 407826.2600   | 4041871.2474 |  |
|                        |                 | 407718.8959   | 4042027.7602 |  |
|                        |                 | 407731.4988   | 4042299.4041 |  |
|                        |                 | 407804.9242   | 4042524.2075 |  |
|                        |                 | 407860.7976   | 4042630.3748 |  |
|                        |                 | 407873.2855   | 4042654.1035 |  |
|                        |                 | 407893.8312   | 4042653.2768 |  |
|                        |                 | 407936.4269   | 4042651.5630 |  |
|                        |                 | 407947.3069   | 4042651.1252 |  |
|                        |                 | 407978.0503   | 4042649.8882 |  |
|                        |                 | 407978 4997   | 4042649 8701 |  |
| i I                    |                 | 1 10,0,0,400, | 1012045.0701 |  |

| _       | 2000 Dust (     |             |              |
|---------|-----------------|-------------|--------------|
| Area ID | Area (sq miles) | UTM X       | UTM Y        |
|         |                 | 407979.3355 | 4042649.8365 |
|         |                 | 407980.4094 | 4042649.7933 |
|         |                 | 407985.9326 | 4042649.5710 |
|         |                 | 408021.5853 | 4042648.1365 |
|         |                 | 408022.4716 | 4042648.1008 |
|         |                 | 408032.2670 | 4042647.7067 |
|         |                 | 408032.2792 | 4042647.7062 |
|         |                 | 408037,2143 | 4042635.1454 |
|         |                 | 408046 7525 | 4042610 8691 |
|         |                 | 408053 9609 | 4042592 5224 |
|         |                 | 408067 3807 | 4042558 3666 |
|         |                 | 408073 8791 | 4042530.5000 |
|         |                 | 408073.8731 | 4042541.0275 |
|         |                 | 408077.3317 | 4042552.4758 |
|         |                 | 408078.1555 | 4042550.5457 |
|         |                 | 400000.2995 | 4042525.4602 |
|         |                 | 400000.5505 | 4042509.0074 |
|         |                 | 408088.7554 | 4042503.9647 |
|         |                 | 408089.5014 | 4042502.0659 |
|         |                 | 408089.5374 | 4042502.0637 |
|         |                 | 408089.5625 | 4042502.0622 |
|         |                 | 408090.7813 | 4042501.9891 |
|         |                 | 408095.0368 | 4042501.7350 |
|         |                 | 408162.3272 | 4042497.7099 |
|         |                 | 408184.0589 | 4042496.4101 |
|         |                 | 408184.9242 | 4042496.3584 |
|         |                 | 408201.5916 | 4042495.3615 |
|         |                 | 408219.8713 | 4042494.2681 |
|         |                 | 408226.3741 | 4042493.8791 |
|         |                 | 408267.6767 | 4042491.4087 |
|         |                 | 408267.7178 | 4042491.4062 |
|         |                 | 408294.6521 | 4042474.0488 |
|         |                 | 408315.3660 | 4042460.7000 |
|         |                 | 408316.4646 | 4042459.9920 |
|         |                 | 408316.4774 | 4042459.9838 |
| Т37-2   | 0.59            | 409286.9516 | 4038201.2212 |
|         |                 | 409308.0584 | 4038163.0196 |
|         |                 | 409308.0602 | 4038162.9814 |
|         |                 | 409308.0610 | 4038162.9628 |
|         |                 | 409310.1022 | 4038119.0518 |
|         |                 | 409311.1102 | 4038097.3658 |
|         |                 | 409312 4915 | 4038067 6499 |
|         |                 | 409312 7645 | 4038061 7760 |
|         |                 | 409325 1482 | 4038037 5861 |
|         |                 | 409335 6731 | 4038017 0272 |
|         |                 | 409335 6730 | 4038017.0272 |
|         |                 | 100331 0110 | 1037882 5867 |
|         |                 | 403334.3143 | 403/002.300/ |
| 1       | 1               | 409554.4050 | 4037792.2832 |

| Area ID | Area (sg miles) | UTM X       | UTM Y        |
|---------|-----------------|-------------|--------------|
|         |                 | 409260.6274 | 4037628.4629 |
|         |                 | 409184.9769 | 4037508.1215 |
|         |                 | 409105.2039 | 4037365.9140 |
|         |                 | 409044.0149 | 4037256.8354 |
|         |                 | 408950.7405 | 4037246.0033 |
|         |                 | 408947.8902 | 4037245.6722 |
|         |                 | 408910.3790 | 4037241.3160 |
|         |                 | 408869.9095 | 4037236.6162 |
|         |                 | 408755.7934 | 4037260.8691 |
|         |                 | 408761.5547 | 4037206.7214 |
|         |                 | 408764.0431 | 4037183.3347 |
|         |                 | 408766.5154 | 4037160.0993 |
|         |                 | 408768.3315 | 4037143.0313 |
|         |                 | 408784.9129 | 4037079.6832 |
|         |                 | 408785.6375 | 4037039.7694 |
|         |                 | 408785.6817 | 4037037.3381 |
|         |                 | 408787.0526 | 4036961.8229 |
|         |                 | 408789.6756 | 4036817.3542 |
|         |                 | 408751.3271 | 4036667.7207 |
|         |                 | 408706.6520 | 4036616.2502 |
|         |                 | 408702.8334 | 4036371.4813 |
|         |                 | 408700.9212 | 4036248.9110 |
|         |                 | 408700.7355 | 4036237.0064 |
|         |                 | 408700.7345 | 4036236.9420 |
|         |                 | 408700.2588 | 4036206.4511 |
|         |                 | 408694.4951 | 4035836.9988 |
|         |                 | 408465.9883 | 4035936.4920 |
|         |                 | 408417.2066 | 4035957.7318 |
|         |                 | 408415.8015 | 4035964.7875 |
|         |                 | 408386.2217 | 4036113.3207 |
|         |                 | 408376.9612 | 4036159.8220 |
|         |                 | 408370.5660 | 4036191.9354 |
|         |                 | 408325.9393 | 4036216.4188 |
|         |                 | 408313.2102 | 4036223.4024 |
|         |                 | 408249.5600 | 4036258.3226 |
|         |                 | 408231.7489 | 4036571.0454 |
|         |                 | 408075.5676 | 4036791.1801 |
|         |                 | 408254.3940 | 4037157.2867 |
|         |                 | 408249.8202 | 4037387.3633 |
|         |                 | 408305.3159 | 4037396.8798 |
|         |                 | 408538.1880 | 4037436.8131 |
|         |                 | 408606.5674 | 4037448.5389 |
|         |                 | 408414.0682 | 4037664.3519 |
|         |                 | 408348.7912 | 4037888.7233 |
|         |                 | 408388.2641 | 4037979.1214 |
|         |                 | 408394.2512 | 4037992.8327 |
|         |                 | 408415.8298 | 4038042.2505 |

| Area ID | Area (sq miles) |             | UTM Y        |
|---------|-----------------|-------------|--------------|
| Alcalb  | Area (sq miles) | 408457 2390 | 4038102 5799 |
|         |                 | 408493 9799 | 4038156 1081 |
|         |                 | 408687 9040 | 4038284 6646 |
|         |                 | 408762 6862 | 4038203 7721 |
|         |                 | 408796 6756 | 4038298 6942 |
|         |                 | 400750.0750 | 4030230.0542 |
|         |                 | 408055.1404 | 4030230.2303 |
|         |                 | 408850.0550 | 4030207.3371 |
|         |                 | 408883.0703 | 4038207.3340 |
|         |                 | 400000.5205 | 4038203.0190 |
|         |                 | 400900.9055 | 4036246.0514 |
|         |                 | 400911.5547 | 4036240.1919 |
|         |                 | 408915.2794 | 4038240.3720 |
|         |                 | 408909.2399 |              |
|         |                 | 409028.9283 | 4038251.5005 |
|         |                 | 409008.1858 | 4038254.4049 |
|         |                 | 409124.1495 | 4038258.0052 |
|         |                 | 409126.1477 | 4038258.7530 |
|         |                 | 409129.0855 | 4038277.7607 |
|         |                 | 409130.9580 | 4038289.8759 |
|         |                 | 409134.0177 | 4038309.6731 |
|         |                 | 409144.5362 | 4038382.5555 |
|         |                 | 409166.2029 | 4038398.4562 |
|         |                 | 409188.6648 | 4038414.9404 |
|         |                 | 409194.4843 | 4038419.2111 |
|         |                 | 409201.0785 | 4038424.0504 |
|         |                 | 409201.1026 | 4038424.0681 |
|         |                 | 409201.2496 | 4038424.0469 |
|         |                 | 409201.6494 | 4038423.9892 |
|         |                 | 409267.1551 | 4038414.5416 |
|         |                 | 409267.1731 | 4038414.5390 |
|         |                 | 409276.8305 | 4038407.5517 |
|         |                 | 409299.1327 | 4038391.4158 |
|         |                 | 409299.1846 | 4038391.3782 |
|         |                 | 409300.1250 | 4038380.9426 |
|         |                 | 409304.3603 | 4038333.9409 |
|         |                 | 409304.7158 | 4038329.9955 |
|         |                 | 409304.7186 | 4038329.9623 |
|         |                 | 409264.9373 | 4038273.3966 |
|         |                 | 409254.9598 | 4038259.2095 |
|         |                 | 409254.9382 | 4038259.1787 |
|         |                 | 409254.9333 | 4038259.1717 |
|         |                 | 409266.6143 | 4038238.0301 |
|         |                 | 409286.9516 | 4038201.2212 |

| Channel Area |                 |             |              |
|--------------|-----------------|-------------|--------------|
| Area ID      | Area (sq miles) | UTM X       | UTM Y        |
| C1           | 0.21            | 412114.1288 | 4023531.1972 |
|              |                 | 411898.3534 | 4023239.0517 |
|              |                 | 411853.5786 | 4023178.4492 |
|              |                 | 411780.3515 | 4023076.2456 |
|              |                 | 411702.1375 | 4022877.2132 |
|              |                 | 411645.2720 | 4022735.1098 |
|              |                 | 411641.2736 | 4022435.1011 |
|              |                 | 411421.1708 | 4022347.8283 |
|              |                 | 411290.0657 | 4022321.4651 |
|              |                 | 411151.2016 | 4022147.9844 |
|              |                 | 410987.9078 | 4022252.4215 |
|              |                 | 410994.3205 | 4022416.6426 |
|              |                 | 411073.0277 | 4022641.9086 |
|              |                 | 411126.7256 | 4022795.5958 |
|              |                 | 411432.4438 | 4022937.5450 |
|              |                 | 411460.7988 | 4022950.7106 |
|              |                 | 411581.3611 | 4023006.5993 |
|              |                 | 411733.8386 | 4023231.0923 |
|              |                 | 411756.0765 | 4023263.9938 |
|              |                 | 411784.7187 | 4023306.3704 |
|              |                 | 411867.2652 | 4023463.2354 |
|              |                 | 411856.6603 | 4023492.7197 |
|              |                 | 411737.3086 | 4023824.9915 |
|              |                 | 411915.0878 | 4023883.7727 |
|              |                 | 411987.3569 | 4023709.3450 |
|              |                 | 412114.1288 | 4023531.1972 |
| C2           | 0.30            | 410021.5195 | 4020289.5251 |
|              |                 | 409689.8168 | 4020165.2179 |
|              |                 | 409630.4774 | 4020144.7287 |
|              |                 | 409576.6128 | 4020126.1299 |
|              |                 | 409445.4661 | 4019983.4003 |
|              |                 | 409435.8230 | 4019902.2959 |
|              |                 | 409208.2558 | 4019473.1115 |
|              |                 | 409164.6560 | 4019560.5346 |
|              |                 | 409160.4540 | 4019569.1396 |
|              |                 | 409135.7321 | 4019619.7659 |
|              |                 | 409133.7381 | 4019623.8493 |
|              |                 | 409132.8181 | 4019625.7333 |
|              |                 | 409119.1730 | 4019653.6761 |
|              |                 | 409087.7794 | 4019744.3676 |
|              |                 | 409076.9241 | 4019775.7268 |
|              |                 | 409064.5237 | 4019812.8632 |
|              |                 | 409052.3419 | 4019860.5319 |
|              |                 | 409109.9316 | 4019969.9738 |
|              |                 | 409201.9155 | 4020086.6047 |
|              |                 | 409223.1416 | 4020188.3568 |
|              |                 | 409280.4484 | 4020086.9084 |
| Channel Area |                 |             |              |
|--------------|-----------------|-------------|--------------|
| Area ID      | Area (sq miles) | UTM X       | UTM Y        |
|              |                 | 409276.4247 | 4020023.1050 |
|              |                 | 409362.4622 | 4020009.5035 |
|              |                 | 409409.2894 | 4020065.3131 |
|              |                 | 409487.6034 | 4020143.3409 |
|              |                 | 409724.2880 | 4020448.5196 |
|              |                 | 409998.0302 | 4020801.4793 |
|              |                 | 410027.5849 | 4021036.2856 |
|              |                 | 410038.4994 | 4021096.3389 |
|              |                 | 410110.0532 | 4021493.3823 |
|              |                 | 410350.3675 | 4021535.4504 |
|              |                 | 410566.9152 | 4021570.1680 |
|              |                 | 410723.1430 | 4021595.2150 |
|              |                 | 410604.9139 | 4021412.4751 |
|              |                 | 410686.3969 | 4021329.2488 |
|              |                 | 410592.4067 | 4021145.4323 |
|              |                 | 410488.7112 | 4020946.6551 |
|              |                 | 410264.9378 | 4020620.1863 |
|              |                 | 410015.7153 | 4020454.4270 |
|              |                 | 410021.5195 | 4020289.5251 |

| Phase 8 Area |                 |             |              |  |
|--------------|-----------------|-------------|--------------|--|
| Area ID      | Area (sq miles) | UTM X       | UTM Y        |  |
| Area A       | 1.96            | 411237.3205 | 4043740.6607 |  |
|              |                 | 411207.6845 | 4043753.6791 |  |
|              |                 | 411179.2895 | 4043757.2091 |  |
|              |                 | 411151.6315 | 4043749.0266 |  |
|              |                 | 411123.9014 | 4043730.4160 |  |
|              |                 | 411089.3187 | 4043670.0089 |  |
|              |                 | 410953.8469 | 4043482.2177 |  |
|              |                 | 410935.7348 | 4043461.5191 |  |
|              |                 | 410823.5172 | 4043456.9972 |  |
|              |                 | 410787.0434 | 4043466.5180 |  |
|              |                 | 410727.7247 | 4043492.0010 |  |
|              |                 | 410704.5141 | 4043495.0568 |  |
|              |                 | 410597.5819 | 4043458.1315 |  |
|              |                 | 410565.5024 | 4043436.8383 |  |
|              |                 | 410543.3654 | 4043401.4241 |  |
|              |                 | 410537.6911 | 4043382.7183 |  |
|              |                 | 410536.8726 | 4043348.8423 |  |
|              |                 | 410542.2467 | 4043327.0034 |  |
|              |                 | 410533.5401 | 4043305.6995 |  |
|              |                 | 410526.6307 | 4043242.9925 |  |
|              |                 | 410511.3725 | 4043210.0862 |  |
|              |                 | 410493.9516 | 4043001.1922 |  |
|              |                 | 410268.6279 | 4043005.6231 |  |
|              |                 | 410003.7039 | 4043010.8326 |  |
|              |                 | 410001.6954 | 4042464.1381 |  |
|              |                 | 410000.0033 | 4042003.4174 |  |
|              |                 | 410723.8358 | 4042002.5739 |  |
|              |                 | 410768.3331 | 4041851.7219 |  |
|              |                 | 410776.8400 | 4041822.8824 |  |
|              |                 | 410840.2849 | 4041607.7952 |  |
|              |                 | 410843.9976 | 4041595.2088 |  |
|              |                 | 410857.4942 | 4041549.4532 |  |
|              |                 | 410825.3880 | 4041524.8233 |  |
|              |                 | 410453.6629 | 4041239.6583 |  |
|              |                 | 410132.6677 | 4040993.4098 |  |
|              |                 | 410754.5323 | 4040429.4164 |  |
|              |                 | 410536.3607 | 4040449.0193 |  |
|              |                 | 410369.0729 | 4040479.2024 |  |
|              |                 | 410233.7633 | 4040544.6348 |  |
|              |                 | 410176.5626 | 4040579.7134 |  |
|              |                 | 410104.1071 | 4040608.5803 |  |
|              |                 | 409907.2818 | 4040745.3987 |  |
|              |                 | 409879.5179 | 4040756.3952 |  |
|              |                 | 409750.2805 | 4040876.4342 |  |
|              |                 | 409701.3330 | 4040895.5954 |  |
|              |                 | 409678.6324 | 4040925.6786 |  |
|              |                 | 409642.8276 | 4040956.5193 |  |

| Phase 8 Area |                 |             |              |
|--------------|-----------------|-------------|--------------|
| Area ID      | Area (sq miles) | UTM X       | UTM Y        |
|              |                 | 409600.4556 | 4040974.3943 |
|              |                 | 409571.2767 | 4041006.1819 |
|              |                 | 409557.0110 | 4041045.3963 |
|              |                 | 409545.6251 | 4041061.2854 |
|              |                 | 409454.5386 | 4041143.5883 |
|              |                 | 409411.7061 | 4041174.3745 |
|              |                 | 409399.9933 | 4041192.2740 |
|              |                 | 409373.0680 | 4041216.8668 |
|              |                 | 409144.3041 | 4041353.2179 |
|              |                 | 409121.3431 | 4041357.7851 |
|              |                 | 409098.3821 | 4041353.2179 |
|              |                 | 409025.7306 | 4041294.5927 |
|              |                 | 408819.0912 | 4041213.6030 |
|              |                 | 408655.7727 | 4041290.5176 |
|              |                 | 408426.6115 | 4041410.1279 |
|              |                 | 408344.8643 | 4041438.2143 |
|              |                 | 408298.9586 | 4041458.6586 |
|              |                 | 408268.2287 | 4041492.7310 |
|              |                 | 408348.9029 | 4041492.4725 |
|              |                 | 408348.0616 | 4041909.5004 |
|              |                 | 408347.9558 | 4041961.9434 |
|              |                 | 408347.0668 | 4042402.6597 |
|              |                 | 408346.9908 | 4042440.3199 |
|              |                 | 408338.8360 | 4042445.5751 |
|              |                 | 408316.4774 | 4042459.9838 |
|              |                 | 408316.4851 | 4042459.9851 |
|              |                 | 408316.5011 | 4042459.9880 |
|              |                 | 408316.6806 | 4042460.0196 |
|              |                 | 408339.4204 | 4042464.0330 |
|              |                 | 408343.1042 | 4042464.6831 |
|              |                 | 408343.1912 | 4042464.6985 |
|              |                 | 408352.7133 | 4042470.4798 |
|              |                 | 408352.9831 | 4042470.6436 |
|              |                 | 408358.4712 | 4042473.9756 |
|              |                 | 408358.9028 | 4042474.2377 |
|              |                 | 408361.9306 | 4042476.0760 |
|              |                 | 408389.6508 | 4042484.1169 |
|              |                 | 408405.7674 | 4042488.7920 |
|              |                 | 408428.3087 | 4042504.1697 |
|              |                 | 408441.1621 | 4042518.9802 |
|              |                 | 408445.2616 | 4042523.7039 |
|              |                 | 408455.9718 | 4042536.0449 |
|              |                 | 408462.6057 | 4042543.6889 |
|              |                 | 408466.8823 | 4042548.6166 |
|              |                 | 408471.3153 | 4042553.7246 |
|              |                 | 408477.8694 | 4042561.2767 |
|              |                 | 408479.8641 | 4042563.5751 |

| Phase 8 Area |                 |             |              |
|--------------|-----------------|-------------|--------------|
| Area ID      | Area (sq miles) | UTM X       | UTM Y        |
|              |                 | 408482.5335 | 4042566.6510 |
|              |                 | 408486.5695 | 4042571.3015 |
|              |                 | 408500.6445 | 4042587.5196 |
|              |                 | 408505.8846 | 4042593.5576 |
|              |                 | 408506.2941 | 4042594.0294 |
|              |                 | 408511.8895 | 4042600.4769 |
|              |                 | 408520.5008 | 4042614.1347 |
|              |                 | 408525.9797 | 4042622.8245 |
|              |                 | 408526.1185 | 4042623.0446 |
|              |                 | 408526.3493 | 4042623.1913 |
|              |                 | 408527.1862 | 4042623.7230 |
|              |                 | 408531.5370 | 4042626.4874 |
|              |                 | 408533.4289 | 4042627.6895 |
|              |                 | 408538.3709 | 4042630.8295 |
|              |                 | 408543.1086 | 4042633.8398 |
|              |                 | 408543.1695 | 4042633.8785 |
|              |                 | 408548.7787 | 4042637.4425 |
|              |                 | 408563.7246 | 4042646.9389 |
|              |                 | 408566.5111 | 4042648.7094 |
|              |                 | 408568,1933 | 4042649.7782 |
|              |                 | 408569.7642 | 4042650.7764 |
|              |                 | 408569.7790 | 4042650.7858 |
|              |                 | 408570.3453 | 4042651.1456 |
|              |                 | 408571 7999 | 4042652 0698 |
|              |                 | 408574,7923 | 4042653.9712 |
|              |                 | 408574 9830 | 4042654 0923 |
|              |                 | 408576 1325 | 4042654 5279 |
|              |                 | 408578 9758 | 4042655 6054 |
|              |                 | 408590 3377 | 4042659 9109 |
|              |                 | 408604 3349 | 4042665 2152 |
|              |                 | 408611.9856 | 4042668.1144 |
|              |                 | 408619 1549 | 4042670 8313 |
|              |                 | 408629 8639 | 4042674 8894 |
|              |                 | 408651.6705 | 4042676.7814 |
|              |                 | 408652 7502 | 4042676 8751 |
|              |                 | 408658 4561 | 4042677 3701 |
|              |                 | 408665 3417 | 4042677 9675 |
|              |                 | 408674 8361 | 4042676 2663 |
|              |                 | 408688 6273 | 4042673 7951 |
|              |                 | 408696 6588 | 4042672 3560 |
|              |                 | 408707 2204 | 4042674 2302 |
|              |                 | 408713 6605 | 4042675 3731 |
|              |                 | 408745 3474 | 4042680 9963 |
|              |                 | 408748 7206 | 4042682 2272 |
|              |                 | 408758 2202 | 4042002.3273 |
|              |                 | 400756.3303 | 4042000.1190 |
|              |                 | 400/00.3233 | 4042069.2729 |
| 1            | 1               | 408/85.346/ | 4042696.7791 |

| Phase 8 Area |                 |             |              |
|--------------|-----------------|-------------|--------------|
| Area ID      | Area (sq miles) | UTM X       | UTM Y        |
|              |                 | 408792.4681 | 4042699.5891 |
|              |                 | 408803.5265 | 4042706.5849 |
|              |                 | 408820.8039 | 4042717.5152 |
|              |                 | 408825.1265 | 4042720.2498 |
|              |                 | 408840.3955 | 4042739.6846 |
|              |                 | 408844.1085 | 4042744.4106 |
|              |                 | 408851.2068 | 4042762.0701 |
|              |                 | 408857.0293 | 4042776.5556 |
|              |                 | 408858.9146 | 4042781.2460 |
|              |                 | 408859.2582 | 4042782.1007 |
|              |                 | 408863.2774 | 4042792.0999 |
|              |                 | 408858.8893 | 4042833.5669 |
|              |                 | 408857.4396 | 4042847.2662 |
|              |                 | 408856.8687 | 4042852.6613 |
|              |                 | 408856.6178 | 4042855.0319 |
|              |                 | 408856.0866 | 4042860.0523 |
|              |                 | 408859.4392 | 4042863.1236 |
|              |                 | 408863.1337 | 4042866.5080 |
|              |                 | 408863.5110 | 4042866.8537 |
|              |                 | 408867.9296 | 4042870.9015 |
|              |                 | 408890.4177 | 4042891.5024 |
|              |                 | 408894.7102 | 4042895.4348 |
|              |                 | 408900.2233 | 4042900.4852 |
|              |                 | 408907.6413 | 4042907.2807 |
|              |                 | 408910.5689 | 4042909.9627 |
|              |                 | 408913.3184 | 4042913.6459 |
|              |                 | 408918.1633 | 4042920.1363 |
|              |                 | 408921.8623 | 4042925.0916 |
|              |                 | 408929.5742 | 4042935.4224 |
|              |                 | 408932.4594 | 4042939.2875 |
|              |                 | 408932.7352 | 4042939.6570 |
|              |                 | 408936.0468 | 4042944.0932 |
|              |                 | 408937.4330 | 4042945.9503 |
|              |                 | 408937.7558 | 4042946.3827 |
|              |                 | 408940.4946 | 4042950.0516 |
|              |                 | 408946.5357 | 4042958.1444 |
|              |                 | 408953.7132 | 4042967.7595 |
|              |                 | 408959.3314 | 4042975.2857 |
|              |                 | 408971.6735 | 4042987.1501 |
|              |                 | 4089/6.9965 | 4042992.2671 |
|              |                 | 408993.9067 | 4043008.5228 |
|              |                 | 408994.3653 | 4043008.9637 |
|              |                 | 409008.4854 | 4043046.8150 |
|              |                 | 409011.3561 | 4043054.5105 |
|              |                 | 409021.0004 | 4043063.4047 |
|              |                 | 409021.8449 | 4043064.1835 |
| 1            | 1               | 409029.3449 | 4043071.1002 |

|         | Phase           | 8 Area      |              |
|---------|-----------------|-------------|--------------|
| Area ID | Area (sq miles) | UTM X       | UTM Y        |
|         |                 | 409029.4133 | 4043071.1632 |
|         |                 | 409035.9237 | 4043077.1673 |
|         |                 | 409041.4086 | 4043082.2255 |
|         |                 | 409049.1885 | 4043089.4003 |
|         |                 | 409057.0231 | 4043096.6256 |
|         |                 | 409060.9224 | 4043100.2216 |
|         |                 | 409064.2670 | 4043103.3061 |
|         |                 | 409064.8988 | 4043103.8887 |
|         |                 | 409081.3001 | 4043119.0144 |
|         |                 | 409083.5694 | 4043121.1072 |
|         |                 | 409092.7411 | 4043129.5655 |
|         |                 | 409103.0041 | 4043136.8856 |
|         |                 | 409119.9071 | 4043148.9417 |
|         |                 | 409123.5351 | 4043151.5294 |
|         |                 | 409125.0977 | 4043152.6440 |
|         |                 | 409131.4936 | 4043157.2058 |
|         |                 | 409146.6404 | 4043168.0094 |
|         |                 | 409156.9721 | 4043183.8188 |
|         |                 | 409157.5060 | 4043184.6357 |
|         |                 | 409158.1803 | 4043185.6676 |
|         |                 | 409169.1853 | 4043202.5072 |
|         |                 | 409169.4921 | 4043202.9767 |
|         |                 | 409169.6449 | 4043203.0818 |
|         |                 | 409194.5618 | 4043220.2162 |
|         |                 | 409200.9353 | 4043230.3216 |
|         |                 | 409208.7508 | 4043242.7132 |
|         |                 | 409208.7762 | 4043242.7534 |
|         |                 | 409230.6355 | 4043256.7461 |
|         |                 | 409238.0474 | 4043261.4907 |
|         |                 | 409246.0315 | 4043266.6016 |
|         |                 | 409331.5726 | 4043349.9087 |
|         |                 | 409344.7418 | 4043368.3637 |
|         |                 | 409498.2187 | 4043486.8379 |
|         |                 | 409513.1152 | 4043503.3271 |
|         |                 | 409564.1080 | 4043531.4515 |
|         |                 | 409606.3741 | 4043547,2951 |
|         |                 | 410002.9423 | 4043763.4240 |
|         |                 | 410192.6181 | 4043839.1058 |
|         |                 | 410212.5063 | 4043857.7331 |
|         |                 | 410224.8423 | 4043887.6674 |
|         |                 | 410263.2830 | 4043926.8198 |
|         |                 | 410428.1796 | 4043982.7461 |
|         |                 | 410597.2709 | 4044063.9791 |
|         |                 | 410780.5637 | 4044127,9989 |
|         |                 | 410797.1634 | 4044138.3212 |
|         |                 | 410822.1383 | 4044165.6309 |
|         |                 | 410976.4794 | 4044211.0969 |
| I       | I               | I           |              |

| Phase 8 Area |                 |             |              |
|--------------|-----------------|-------------|--------------|
| Area ID      | Area (sq miles) | UTM X       | UTM Y        |
|              |                 | 410994.0806 | 4044226.5327 |
|              |                 | 411004.4350 | 4044247.5293 |
|              |                 | 411020.9354 | 4044383.2291 |
|              |                 | 411194.2518 | 4044437.7691 |
|              |                 | 411250.0279 | 4044449.6939 |
|              |                 | 411237.3205 | 4043740.6607 |
| Area B       | 0.06            | 411368.8821 | 4043685.0145 |
|              |                 | 411375.0392 | 4043915.7480 |
|              |                 | 411516.4385 | 4043938.4040 |
|              |                 | 411620.8424 | 4044005.2321 |
|              |                 | 411709.8854 | 4044038.2482 |
|              |                 | 411758.3361 | 4044037.2052 |
|              |                 | 411828.9394 | 4044025.2421 |
|              |                 | 411888.9563 | 4043991.2337 |
|              |                 | 411896.9565 | 4043946.2341 |
|              |                 | 411863.9022 | 4043894.9825 |
|              |                 | 411828.8353 | 4043806.6428 |
|              |                 | 411788.9031 | 4043686.1008 |
|              |                 | 411697.8689 | 4043662.0922 |
|              |                 | 411602.8327 | 4043660.0595 |
|              |                 | 411456.7364 | 4043657.0894 |
|              |                 | 411368.8821 | 4043685.0145 |

|         | Pilase 9,       | / 10 Alea    | <b>1</b>       |
|---------|-----------------|--------------|----------------|
| Area ID | Area (sq miles) | UTM X        | UTM Y          |
| C2-L1   | 0.08            | 409087.7794  | 4019744.3676   |
|         |                 | 409119.1730  | 4019653.6761   |
|         |                 | 409132.8181  | 4019625.7333   |
|         |                 | 409133.7381  | 4019623.8493   |
|         |                 | 409135.7321  | 4019619.7659   |
|         |                 | 409160.4540  | 4019569.1396   |
|         |                 | 409164.6560  | 4019560.5346   |
|         |                 | 409208.2558  | 4019473.1115   |
|         |                 | 409207.5174  | 4019364.3380   |
|         |                 | 409207.4586  | 4019355.6851   |
|         |                 | 409219.4108  | 4019347.7120   |
|         |                 | 409240.1576  | 4019333.8721   |
|         |                 | 409272.1768  | 4019316.2843   |
|         |                 | 409302.2554  | 4019299.7625   |
|         |                 | 409374.7338  | 4019259.9508   |
|         |                 | 409428.6436  | 4019253.2063   |
|         |                 | 409493.9270  | 4019250.0862   |
|         |                 | 409500.0000  | 4019229.7137   |
|         |                 | 409534.8572  | 4019112.7819   |
|         |                 | 409535.2630  | 4019063.9333   |
|         |                 | 409535.2790  | 4019062.0029   |
|         |                 | 409535.4202  | 4019044.9991   |
|         |                 | 409535.7335  | 4019007.2814   |
|         |                 | 409535.7940  | 4019000.0000   |
|         |                 | 409535.8384  | 4018994.6572   |
|         |                 | 409524 1563  | 4018994 1348   |
|         |                 | 409505 6563  | 4018993 3340   |
|         |                 | 409501.8125  | 4018984 2520   |
|         |                 | 409501.9375  | 4018961 3789   |
|         |                 | 409502.33750 | 4018943 6641   |
|         |                 | 409479 4063  | 4018921 0293   |
|         |                 | 409469 4688  | 4018909 3457   |
|         |                 | 409459 9688  | 4018905 8438   |
|         |                 | 409411 3750  | 4018888 4805   |
|         |                 | 409411.5750  | 4010000.4000   |
|         |                 | 409375 1875  | 4018815 8887   |
|         |                 | 409373.1073  | 4010813.0007   |
|         |                 | 100355 0275  | 1018801 1072   |
|         |                 | 100350 1975  | 1018708 6875   |
|         |                 | 403330.1073  | 40107 90.007 5 |
|         |                 | 403344.2100  | 4010797.0170   |
|         |                 | 403333.7430  | 4010/33.4102   |
|         |                 | 409302.8125  | 4010705.2930   |
|         |                 | 409250.5329  | 4010743.33/0   |
|         |                 | 409250.3750  | 4018743.1016   |
|         |                 | 409244.9063  | 4018/40.9/46   |
|         |                 | 409221.4063  | 4018/39.1406   |
| 1       |                 | 409204.0938  | 4018737.2305   |

| Exhibit 1 - PM10 Contro | Areas and Coordinates |
|-------------------------|-----------------------|
|-------------------------|-----------------------|

| Area ID | Area (sq miles) | UTM X       | UTM Y        |
|---------|-----------------|-------------|--------------|
|         |                 | 409198.1250 | 4018737.7090 |
|         |                 | 409195.0000 | 4018741.9863 |
|         |                 | 409192.9375 | 4018747.7637 |
|         |                 | 409191.4375 | 4018753.2520 |
|         |                 | 409190.0625 | 4018758.9082 |
|         |                 | 409190.4375 | 4018764.6133 |
|         |                 | 409191.8125 | 4018769.8379 |
|         |                 | 409195.1250 | 4018774.5059 |
|         |                 | 409198.6250 | 4018779.0742 |
|         |                 | 409200.9063 | 4018784.5996 |
|         |                 | 409201.9375 | 4018786.2715 |
|         |                 | 409204.2188 | 4018790.0527 |
|         |                 | 409207.3125 | 4018794.8496 |
|         |                 | 409211.6250 | 4018797.8184 |
|         |                 | 409216.2188 | 4018801.4961 |
|         |                 | 409219.6875 | 4018805.8887 |
|         |                 | 409223.0938 | 4018810.2930 |
|         |                 | 409226.1875 | 4018815.2168 |
|         |                 | 409229.7188 | 4018819.8027 |
|         |                 | 409232.1875 | 4018825.0371 |
|         |                 | 409234.5625 | 4018830.1231 |
|         |                 | 409235.3750 | 4018836.1895 |
|         |                 | 409234.5938 | 4018841.4199 |
|         |                 | 409233.1250 | 4018846.6074 |
|         |                 | 409230.8125 | 4018851.6250 |
|         |                 | 409228.1875 | 4018856.6602 |
|         |                 | 409224.5313 | 4018861.3262 |
|         |                 | 409220.7813 | 4018865.6563 |
|         |                 | 409218.8125 | 4018870.9414 |
|         |                 | 409217.8750 | 4018876.4922 |
|         |                 | 409215.3125 | 4018881.1738 |
|         |                 | 409213.3750 | 4018885.8184 |
|         |                 | 409212.1250 | 4018891.1270 |
|         |                 | 409209.7813 | 4018894.8106 |
|         |                 | 409209.5625 | 4018901.0000 |
|         |                 | 409210.7813 | 4018906.7266 |
|         |                 | 409212.3438 | 4018911.9688 |
|         |                 | 409215.1563 | 4018916.5918 |
|         |                 | 409218.9063 | 4018920.8926 |
|         |                 | 409222.8125 | 4018924.4766 |
|         |                 | 409226.2813 | 4018928.5117 |
|         |                 | 409229.3750 | 4018931.5137 |
|         |                 | 409231.4688 | 4018933.7598 |
|         |                 | 409235.1250 | 4018937.6543 |
|         |                 | 409239.8750 | 4018940.9121 |
|         |                 | 409243.5313 | 4018944.9590 |
|         |                 | 409246.7500 | 4018949.4375 |

| Exhibit 1 - PM10 Control Are | eas and Coordinates |
|------------------------------|---------------------|
|------------------------------|---------------------|

| Area ID | Area (sɑ miles) | UTM X       | UTM Y        |
|---------|-----------------|-------------|--------------|
|         |                 | 409248.4688 | 4018954.5586 |
|         |                 | 409247.7813 | 4018959.7637 |
|         |                 | 409248.8438 | 4018965.1680 |
|         |                 | 409253.0625 | 4018968.6270 |
|         |                 | 409257.7829 | 4018971.0797 |
|         |                 | 409291.3125 | 4018993.2539 |
|         |                 | 409309.4063 | 4018979.5859 |
|         |                 | 409335.4688 | 4018983.5879 |
|         |                 | 409353.6250 | 4019026.3809 |
|         |                 | 409356.5830 | 4019104.0949 |
|         |                 | 409356.0625 | 4019106.2852 |
|         |                 | 409356.7234 | 4019107.7831 |
|         |                 | 409357.0938 | 4019117.5137 |
|         |                 | 409365.3438 | 4019190.8477 |
|         |                 | 409342.5000 | 4019222.2031 |
|         |                 | 409306.1875 | 4019242.1289 |
|         |                 | 409285.8589 | 4019256.1706 |
|         |                 | 409284.1250 | 4019257.1387 |
|         |                 | 409280.9688 | 4019259.0879 |
|         |                 | 409280.8973 | 4019259.1698 |
|         |                 | 409280.7325 | 4019259.2676 |
|         |                 | 409280.6563 | 4019259.2891 |
|         |                 | 409280.2218 | 4019259.5708 |
|         |                 | 409276.9687 | 4019261.5019 |
|         |                 | 409262.6875 | 4019271.9140 |
|         |                 | 409247.6250 | 4019282.4531 |
|         |                 | 409233.2187 | 4019292.5313 |
|         |                 | 409197.8181 | 4019320.2782 |
|         |                 | 409195.7813 | 4019321.6465 |
|         |                 | 409192.2188 | 4019324.1133 |
|         |                 | 409192.2500 | 4019324.2578 |
|         |                 | 409192.3125 | 4019324.3594 |
|         |                 | 409192.2813 | 4019324.5391 |
|         |                 | 409186.7813 | 4019328.7168 |
|         |                 | 409186.2377 | 4019329.3549 |
|         |                 | 409186.0191 | 4019329.5262 |
|         |                 | 409185.9688 | 4019329.4863 |
|         |                 | 409183.0000 | 4019331.8926 |
|         |                 | 409153.7188 | 4019363.2930 |
|         |                 | 409134.1563 | 4019390.8242 |
|         |                 | 409134.1875 | 4019405.6758 |
|         |                 | 409140.5312 | 4019422.8145 |
|         |                 | 409144.9055 | 4019432.0277 |
|         |                 | 409137.4375 | 4019443.4883 |
|         |                 | 409120.9063 | 4019442.1953 |
|         |                 | 409074.3125 | 4019442.1231 |
|         |                 | 409059.8438 | 4019446.7422 |

| Area ID   Area (sq miles)   UTM X   UTM Y     409046.5938   4019458.9746   4009479.2481   4019479.2481     408978.2813   4019479.2481   408978.2813   4019479.2481     408984.39688   4019519.6250   408998.4063   4019516.7305     408862.1563   4019572.7344   408828.3750   4019572.7344     408828.3750   401958.5293   400862.90361   4019730.5739     408624.1563   4019730.5739   408629.361   4019730.5739     408601.4375   4019730.5739   408629.7600   4019730.5739     DuckPond-L1   0.16   410031.0849   401584.3964     410061.7811   4018587.3936   410175.312   4018587.3936     410064.1562   4018581.6230   410099.0625   4018581.2128     410099.0625   4018580.7675   410114.6250   4018580.039     410114.6250   4018580.039   410147.9687   4018578.0117     410114.062   4018580.039   410147.9687   4018578.0117     410114.0500   4018578.0117   410185.0.3297   4101858.0.3297 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Muse   Muse   Muse     Muse                                                                                                                                                                                                                                                                                                                  |
| DuckPond-L1   0.16   408978.2813   4019479.2481     0.16   408903.9688   4019519.6250     408808.4063   4019572.7344     408862.1563   4019572.7344     408828.3750   4019572.4863     408828.3750   4019572.7344     408828.3750   4019572.7344     408828.3750   4019572.7344     408828.3750   4019572.7344     408828.3750   4019572.7344     408828.3750   4019585.5293     408529.0361   4019730.5739     408629.0361   4019730.5739     408629.0361   401973.8164     408601.4375   4019758.4994     40987.7794   4019744.3676     409087.7794   4019744.3676     410032.3437   4018587.3936     410061.7811   4018580.7016     410064.1562   4018581.6230     410064.1562   4018581.0267     410099.0625   4018581.0267     410099.0625   4018580.3014     410114.6250   4018588.0319     410147.9687   4018578.6796     41                                                                      |
| 408943.9688   4019519.6250     408908.4063   4019567.7344     408862.1563   4019572.7344     408843.8750   4019572.7344     408843.8750   4019585.5293     408759.6563   4019534.6895     408629.0361   4019730.5739     408624.1563   4019733.8164     408801.4375   4019750.4258     408590.7600   4019750.4258     408590.7600   4019754.4863     4080507.7794   4019744.3676     4008507.7794   4019744.3676     410031.0849   4018587.3936     410061.7811   4018580.7016     410064.1562   4018581.6230     410084.2500   4018581.0267     41009.0430   4018581.0267     41009.0430   4018581.0267     41009.0625   4018580.7675     410114.6250   4018580.8418     410131.4062   4018580.3039     410131.4062   4018580.3039     410173.5937   4018580.3039     410173.5937   4018580.3104     410182.4375   4018580.3104                                                                         |
| 408908.4063   4019566.7305     408862.1563   4019572.7344     408862.1563   4019572.7344     408843.8750   4019574.4863     408828.3750   4019585.5293     408759.6563   4019634.6895     408624.1563   4019730.5739     408624.1563   4019733.8164     408601.4375   4019734.3676     408590.7600   4019754.4258     408590.7600   4019744.3676     408087.7794   4019744.3676     410031.0849   4018587.3936     410061.7811   4018580.7016     410061.7811   4018580.7016     410064.1562   4018581.6230     410084.2500   4018581.6230     410090.4430   4018581.0267     410090.4430   4018581.0267     410099.0625   4018580.7675     410141.4062   4018580.039     410141.4062   4018580.039     410147.9687   4018578.0117     410181.7183   4018580.3297     410182.4375   4018580.3104     410182.6875   4018580.3104     <                                                                    |
| 408862.1563   4019572.7344     408843.8750   4019574.4863     408828.3750   4019585.5293     408759.6563   4019634.6895     408629.0361   4019730.5739     408629.0361   4019733.8164     408601.4375   4019750.4258     408659.7600   4019750.4258     408659.7600   4019754.4994     409087.7794   4019744.3676     4009087.7794   4019744.3676     410032.3437   4018587.3936     410064.1562   4018581.6230     410064.1562   4018581.6230     410090.4430   4018581.6230     410090.625   4018581.0267     410090.625   4018580.7675     4100114.6250   4018580.7675     410114.6250   4018580.039     410114.6250   4018580.039     410114.6250   4018580.3297     410182.6875   4018580.3297     410182.4375   4018580.3104     410182.6375   4018580.3104                                                                                                                                        |
| 408843.8750 4019574.4863   408828.3750 4019585.5293   408759.6563 4019634.6895   408629.0361 4019730.5739   408629.0361 4019733.8164   408601.4375 4019750.4258   408509.7600 4019758.4994   409087.7794 4019754.3676   409087.7794 4019754.3676   410031.0849 4018587.3936   410061.7811 4018580.7016   410064.1562 4018581.6230   410075.5312 4018580.7016   410090.4430 4018581.2128   410090.625 4018580.7675   4100114.6250 4018580.7675   410114.6250 4018580.7675   410114.6250 4018580.3297   410173.5937 4018580.3297   410182.4375 4018580.3104   410182.4375 4018580.3104                                                                                                                                                                                                                                                                                                                     |
| 408828.3750   4019585.5293     408759.6563   4019634.6895     408629.0361   4019730.5739     408624.1563   4019733.8164     408601.4375   4019750.4258     408590.7600   4019758.4994     409087.7794   401974.3676     410032.3437   4018587.3936     410032.3437   401858.37936     410064.1562   4018581.6230     410075.5312   4018581.6230     410090.4130   4018581.2128     410090.4250   4018581.0267     410090.4250   4018581.0267     410090.4250   4018580.7675     410114.6250   4018580.0039     410114.6250   4018580.0039     410114.6250   4018580.0039     410114.6250   4018580.0039     410114.6250   4018580.0039     410114.79687   4018580.0117     410181.7183   4018580.3297     410182.6875   4018580.3104     410182.6875   4018580.3104                                                                                                                                      |
| 408759.6563   4019634.6895     408629.0361   4019730.5739     408624.1563   4019733.8164     408601.4375   4019750.4258     408590.7600   4019738.4994     409087.7794   4019744.3676     400031.0849   401857.3936     410031.0849   4018587.3936     410061.7811   4018580.7016     410064.1562   4018581.6230     410075.5312   4018580.8203     41009.4430   4018581.2128     41009.4430   4018580.7675     41009.4430   4018580.0039     410141.6250   4018580.0039     410147.9687   4018578.6796     410147.9687   4018578.6796     410173.5937   4018580.3207     410181.7183   4018580.3297     410181.7183   4018580.3297     410181.7183   4018580.3104                                                                                                                                                                                                                                       |
| 408629.0361   4019730.5739     408624.1563   4019733.8164     408601.4375   4019750.4258     408590.7600   4019758.4994     409087.7794   401974.3676     40032.3437   4018587.3936     410032.3437   4018580.7016     410061.7811   4018580.7016     410064.1562   4018581.6230     410075.5312   4018580.8203     410090.4430   4018581.0267     410090.4430   4018580.7675     410114.6250   4018580.8418     410131.4062   4018580.8418     410147.9687   4018578.0117     410147.9687   4018578.0117     410181.7183   401857.8017     410181.7183   4018580.3297     410181.7183   4018580.3297     410182.4375   4018580.3104                                                                                                                                                                                                                                                                     |
| 408624.1563   4019733.8164     408601.4375   4019750.4258     408590.7600   4019758.4994     409087.7794   4019744.3676     410031.0849   4018587.3936     410032.3437   4018584.3964     410061.7811   4018580.7016     410064.1562   4018580.7016     410075.5312   4018580.8203     410090.4430   4018581.0267     410090.4430   4018580.7675     410114.6250   4018580.0039     410131.4062   4018580.0039     410147.9687   4018578.6796     410173.5937   4018580.3297     410182.4375   4018580.8613     410182.4375   4018580.3104                                                                                                                                                                                                                                                                                                                                                               |
| M08601.4375 4019750.4258   408590.7600 4019758.4994   409087.7794 4019744.3676   4009087.7794 4019744.3676   410031.0849 4018587.3936   410032.3437 4018584.3964   410061.7811 4018580.7016   410064.1562 4018581.6230   410075.5312 4018580.8203   410084.2500 4018581.2128   410090.4430 4018581.0267   410099.0625 4018580.7675   410114.6250 4018580.0039   410147.9687 4018578.0117   410173.5937 4018580.4902   410173.5937 4018580.3297   410181.7183 4018580.3104   410182.6375 4018580.3104                                                                                                                                                                                                                                                                                                                                                                                                     |
| DuckPond-L1   0.16   408590.7600   4019758.4994     DuckPond-L1   0.16   410031.0849   4018587.3936     410032.3437   4018584.3964   410061.7811   4018580.7016     410064.1562   4018581.6230   410075.5312   4018580.8203     410084.2500   4018581.2128   410090.4430   4018581.0267     41009.0625   4018580.7675   410114.6250   4018580.039     410114.6250   4018580.039   410147.9687   4018578.0117     410161.5000   4018578.6796   410173.5937   4018580.3297     410181.7183   4018580.3297   410182.4375   4018580.3104     410182.6875   4018580.3104   410182.6875   4018580.3104                                                                                                                                                                                                                                                                                                         |
| DuckPond-L1   0.16   409087.7794   4019744.3676     M10031.0849   4018587.3936   4018587.3936   4018587.3936     M10032.3437   4018584.3964   410032.3437   4018580.7016     M10061.7811   4018580.7016   410064.1562   4018581.6230     M10075.5312   4018580.8203   410075.5312   4018581.2128     M10090.4430   4018581.0267   410099.0625   4018581.0267     M10099.0625   4018580.8418   410114.6250   4018580.0399     M10114.6250   4018580.0039   410147.9687   4018578.0117     M10161.5000   4018578.6796   410173.5937   4018580.3297     M10181.7183   4018580.3297   410182.4375   4018580.3104     M10182.6875   4018580.3104   410182.6875   4018580.3104                                                                                                                                                                                                                                 |
| DuckPond-L1   0.16   410031.0849   4018587.3936     410032.3437   4018584.3964   410032.3437   4018584.3964     410061.7811   4018580.7016   410064.1562   4018581.6230     410075.5312   4018580.8203   410075.5312   4018581.2128     410090.4430   4018581.228   410099.0625   4018580.7675     410114.6250   4018580.0039   410131.4062   4018580.0039     410147.9687   4018578.0117   410161.5000   4018578.6796     410173.5937   4018580.3297   410181.7183   4018580.3297     410182.4375   4018580.3104   410182.6875   4018576.9366                                                                                                                                                                                                                                                                                                                                                           |
| 410032.3437 4018584.3964   410061.7811 4018580.7016   410064.1562 4018581.6230   410075.5312 4018580.8203   410084.2500 4018581.2128   410090.4430 4018581.0267   410090.625 4018580.7675   410114.6250 4018580.8418   410131.4062 4018580.0039   410147.9687 4018578.0117   410161.5000 4018578.6796   410173.5937 4018580.3297   410181.7183 4018580.3297   410182.6875 4018580.3104   410184.2389 4018576.9366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 410061.7811 4018580.7016   410064.1562 4018581.6230   410075.5312 4018580.8203   410084.2500 4018581.2128   410090.4430 4018581.0267   410099.0625 4018580.7675   41014.6250 4018580.8418   410131.4062 4018580.0039   410147.9687 4018578.0117   410161.5000 4018578.6796   410173.5937 4018580.3297   410181.7183 4018580.8613   410182.4375 4018580.3104   410184.2389 4018576.9366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 410064.1562 4018581.6230   410075.5312 4018580.8203   410084.2500 4018581.2128   410090.4430 4018581.0267   410099.0625 4018580.7675   410114.6250 4018580.8418   410131.4062 4018578.0117   410161.5000 4018578.6796   410173.5937 4018580.3297   410182.4375 4018580.8613   410182.6875 4018580.3104   410184.2389 4018576.9366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 410075.5312 4018580.8203   410084.2500 4018581.2128   410090.4430 4018581.0267   410099.0625 4018580.7675   410114.6250 4018580.8418   410131.4062 4018580.0039   410147.9687 4018578.0117   410161.5000 4018578.6796   410173.5937 4018580.3297   410182.4375 4018580.8613   410182.6875 4018580.3104   410184.2389 4018576.9366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 410084.2500 4018581.2128   410090.4430 4018581.0267   410099.0625 4018580.7675   410114.6250 4018580.8418   410131.4062 4018580.0039   410147.9687 4018578.0117   410161.5000 4018578.6796   410173.5937 4018580.3297   410182.4375 4018580.8613   410182.6875 4018580.3104   410184.2389 4018576.9366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 410090.4430 4018581.0267   410099.0625 4018580.7675   410114.6250 4018580.8418   410131.4062 4018580.0039   410147.9687 4018578.0117   410161.5000 4018578.6796   410173.5937 4018580.3297   410182.4375 4018580.8613   410182.6875 4018580.3104   410184.2389 4018576.9366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 410099.0625 4018580.7675   410114.6250 4018580.8418   410131.4062 4018580.0039   410147.9687 4018578.0117   410161.5000 4018578.6796   410173.5937 4018580.4902   410181.7183 4018580.3297   410182.4375 4018580.8613   410182.6875 4018580.3104   410184.2389 4018576.9366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 410114.6250 4018580.8418   410131.4062 4018580.0039   410147.9687 4018578.0117   410161.5000 4018578.6796   410173.5937 4018580.4902   410181.7183 4018580.3297   410182.4375 4018580.8613   410182.6875 4018580.3104   410184.2389 4018576.9366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 410131.4062 4018580.0039   410147.9687 4018578.0117   410161.5000 4018578.6796   410173.5937 4018580.4902   410181.7183 4018580.3297   410182.4375 4018580.8613   410182.6875 4018580.3104   410184.2389 4018576.9366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 410147.9687 4018578.0117   410161.5000 4018578.6796   410173.5937 4018580.4902   410181.7183 4018580.3297   410182.4375 4018580.8613   410182.6875 4018580.3104   410184.2389 4018576.9366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 410161.5000 4018578.6796   410173.5937 4018580.4902   410181.7183 4018580.3297   410182.4375 4018580.8613   410182.6875 4018580.3104   410184.2389 4018576.9366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 410173.5937 4018580.4902   410181.7183 4018580.3297   410182.4375 4018580.8613   410182.6875 4018580.3104   410184.2389 4018576 9366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 410181.7183 4018580.3297   410182.4375 4018580.8613   410182.6875 4018580.3104   410184.2389 4018576.9366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 410182.4375 4018580.8613   410182.6875 4018580.3104   410184.2389 4018576.9366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 410182.6875 4018580.3104<br>410184.2389 4018576.9366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 410184 2389 4018576 9366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 410104.2505 4010570.5500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 410187.4375 4018569.9804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 410188.2812 4018558.3593                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 410190.5346 4018524.4617                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 410200.8750 4018490.8964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 410231.3437 4018479.4785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 410354.2812 4018478.9472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 410451.4062 4018488.9179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 410466.6439 4018498.9629                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 410532.6250 4018542.4589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 410589.2500 4018552.7656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 410707.4687 4018560.7851                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 410798.9822 4018560.5659                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 410804.9241 4018560.5518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 410812.2900 4018560.5342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 410820.8438 4018560.5137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 410834.3125 4018557.6856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 410844.6563 4018552.3574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Phase 9/10 Area |                 |             |              |  |
|-----------------|-----------------|-------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |
|                 |                 | 410844.6639 | 4018552.3535 |  |
|                 |                 | 410847.5625 | 4018550.8672 |  |
|                 |                 | 410850.3125 | 4018547.8301 |  |
|                 |                 | 410853.7188 | 4018547.5059 |  |
|                 |                 | 410857.0313 | 4018549.7461 |  |
|                 |                 | 410863.2193 | 4018554.0584 |  |
|                 |                 | 410867.8750 | 4018557.3027 |  |
|                 |                 | 410870.8097 | 4018559.3402 |  |
|                 |                 | 410874.2187 | 4018561.7070 |  |
|                 |                 | 410893.7187 | 4018561.6250 |  |
|                 |                 | 410899.9687 | 4018542.9746 |  |
|                 |                 | 410905.7187 | 4018522.6191 |  |
|                 |                 | 410906.1241 | 4018520.4503 |  |
|                 |                 | 410906.1250 | 4018520.4453 |  |
|                 |                 | 410906.2813 | 4018519.7109 |  |
|                 |                 | 410909.7812 | 4018501.6230 |  |
|                 |                 | 410901.3437 | 4018483.3066 |  |
|                 |                 | 410900.9063 | 4018471.0234 |  |
|                 |                 | 410900.9039 | 4018470.9633 |  |
|                 |                 | 410900.7187 | 4018466.3027 |  |
|                 |                 | 410904.4062 | 4018461.4941 |  |
|                 |                 | 410904.4110 | 4018461.4879 |  |
|                 |                 | 410910.3315 | 4018453.7562 |  |
|                 |                 | 410910.3437 | 4018453.7402 |  |
|                 |                 | 410910.4375 | 4018453.6367 |  |
|                 |                 | 410910.9683 | 4018443.1502 |  |
|                 |                 | 410910.9688 | 4018443.1406 |  |
|                 |                 | 410911.2187 | 4018437.8457 |  |
|                 |                 | 410907.8125 | 4018417.8398 |  |
|                 |                 | 410900.6250 | 4018398.5527 |  |
|                 |                 | 410883.5312 | 4018390.5898 |  |
|                 |                 | 410865.8750 | 4018390.1894 |  |
|                 |                 | 410854.1875 | 4018378.3515 |  |
|                 |                 | 410841.1875 | 4018369.8027 |  |
|                 |                 | 410840.6562 | 4018369.0937 |  |
|                 |                 | 410837.7813 | 4018365.1387 |  |
|                 |                 | 410835.8266 | 4018363.0415 |  |
|                 |                 | 410830.7265 | 4018357.5695 |  |
|                 |                 | 410827.5625 | 4018357.0000 |  |
|                 |                 | 410822.8911 | 4018358.9993 |  |
|                 |                 | 410819.9687 | 4018360.2500 |  |
|                 |                 | 410814.1562 | 4018352.5000 |  |
|                 |                 | 410810.4739 | 4018348.5399 |  |
|                 |                 | 410804.6250 | 4018342.2500 |  |
|                 |                 | 410803.0625 | 4018339.5000 |  |
|                 |                 | 410800.2813 | 4018335.2500 |  |
|                 |                 | 410792.0000 | 4018328.5000 |  |

| Phase 9/10 Area |                 |             |              |  |
|-----------------|-----------------|-------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |
|                 |                 | 410790.9168 | 4018326.7118 |  |
|                 |                 | 410788.0625 | 4018322.0000 |  |
|                 |                 | 410777.7188 | 4018318.0000 |  |
|                 |                 | 410768.7812 | 4018317.5000 |  |
|                 |                 | 410761.8125 | 4018304.5000 |  |
|                 |                 | 410757.7187 | 4018301.2500 |  |
|                 |                 | 410764.5313 | 4018285.0000 |  |
|                 |                 | 410761.9062 | 4018277.0000 |  |
|                 |                 | 410757.6148 | 4018268.9799 |  |
|                 |                 | 410754.2812 | 4018262.7500 |  |
|                 |                 | 410749.3125 | 4018261.5000 |  |
|                 |                 | 410742.1875 | 4018259.2500 |  |
|                 |                 | 410749.3125 | 4018249.7500 |  |
|                 |                 | 410750.3437 | 4018248.2500 |  |
|                 |                 | 410750.5937 | 4018246.2500 |  |
|                 |                 | 410749.3125 | 4018245.2500 |  |
|                 |                 | 410748.8125 | 4018245.0000 |  |
|                 |                 | 410740.6562 | 4018246.2500 |  |
|                 |                 | 410739.9303 | 4018246.3706 |  |
|                 |                 | 410730.1250 | 4018248.0000 |  |
|                 |                 | 410709.7500 | 4018235.5000 |  |
|                 |                 | 410702.3125 | 4018231.2500 |  |
|                 |                 | 410700.0705 | 4018227.9247 |  |
|                 |                 | 410696.7500 | 4018223.0000 |  |
|                 |                 | 410688.3438 | 4018213.7500 |  |
|                 |                 | 410668.5000 | 4018206.2500 |  |
|                 |                 | 410627.3750 | 4018198.0000 |  |
|                 |                 | 410621.3125 | 4018183.7500 |  |
|                 |                 | 410624.2187 | 4018181.5000 |  |
|                 |                 | 410620.0937 | 4018182.2500 |  |
|                 |                 | 410594.5312 | 4018181.0000 |  |
|                 |                 | 410589.2187 | 4018181.5000 |  |
|                 |                 | 410566.4688 | 4018186.5000 |  |
|                 |                 | 410535.8750 | 4018171.0000 |  |
|                 |                 | 410532.9062 | 4018167.2500 |  |
|                 |                 | 410529.1875 | 4018164.0000 |  |
|                 |                 | 410500.9687 | 4018141.2500 |  |
|                 |                 | 410494.2187 | 4018135.7500 |  |
|                 |                 | 410488.1250 | 4018133.0000 |  |
|                 |                 | 410485.5625 | 4018135.7500 |  |
|                 |                 | 410474.4375 | 4018137.0000 |  |
|                 |                 | 410468.3437 | 4018133.0000 |  |
|                 |                 | 410464.6562 | 4018137.7500 |  |
|                 |                 | 410446.7187 | 4018145.0000 |  |
|                 |                 | 410440.1250 | 4018145.0000 |  |
|                 |                 | 410428.8750 | 4018142.7500 |  |
|                 |                 | 410421.5625 | 4018140.7500 |  |

| Phase 9/10 Area |                 |             |              |  |
|-----------------|-----------------|-------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |
|                 |                 | 410419.7140 | 4018140.1121 |  |
|                 |                 | 410413.5937 | 4018138.0000 |  |
|                 |                 | 410408.9063 | 4018137.0000 |  |
|                 |                 | 410401.3750 | 4018129.7500 |  |
|                 |                 | 410397.0937 | 4018126.5000 |  |
|                 |                 | 410394.9062 | 4018122.7500 |  |
|                 |                 | 410389.7188 | 4018111.2500 |  |
|                 |                 | 410386.5000 | 4018107.2500 |  |
|                 |                 | 410379.4221 | 4018100.9586 |  |
|                 |                 | 410378.9063 | 4018100.5000 |  |
|                 |                 | 410377.7500 | 4018099.5000 |  |
|                 |                 | 410375.9688 | 4018099.0000 |  |
|                 |                 | 410375.9280 | 4018099.0214 |  |
|                 |                 | 410373.0937 | 4018100.5000 |  |
|                 |                 | 410372.7087 | 4018101.6034 |  |
|                 |                 | 410371.0000 | 4018106.5000 |  |
|                 |                 | 410350.2500 | 4018116.2500 |  |
|                 |                 | 410333.3667 | 4018121.4261 |  |
|                 |                 | 410331.4062 | 4018124.1250 |  |
|                 |                 | 410333.2500 | 4018140.2480 |  |
|                 |                 | 410333.2506 | 4018140.2538 |  |
|                 |                 | 410333.4062 | 4018141.7070 |  |
|                 |                 | 410333.6875 | 4018155.2617 |  |
|                 |                 | 410324.6250 | 4018165.8613 |  |
|                 |                 | 410323.7802 | 4018166.2622 |  |
|                 |                 | 410307.6562 | 4018173.8554 |  |
|                 |                 | 410297.6875 | 4018189.5019 |  |
|                 |                 | 410288.8437 | 4018192.3730 |  |
|                 |                 | 410277.6250 | 4018191.7500 |  |
|                 |                 | 410266.3125 | 4018184.4707 |  |
|                 |                 | 410252.5625 | 4018175.0234 |  |
|                 |                 | 410233.0937 | 4018172.1308 |  |
|                 |                 | 410217.5000 | 4018183.3554 |  |
|                 |                 | 410211.9375 | 4018201.1113 |  |
|                 |                 | 410208.9375 | 4018208.8907 |  |
|                 |                 | 410205.6875 | 4018217.3515 |  |
|                 |                 | 410202.8435 | 4018219.5388 |  |
|                 |                 | 410199.3125 | 4018222.2519 |  |
|                 |                 | 410192.7500 | 4018221.7363 |  |
|                 |                 | 410177.5318 | 4018231.4436 |  |
|                 |                 | 410176.0625 | 4018232.3808 |  |
|                 |                 | 410174.6592 | 4018240.8893 |  |
|                 |                 | 410172.7500 | 4018252.4648 |  |
|                 |                 | 410175.3437 | 4018253.2578 |  |
|                 |                 | 410175.7187 | 4018262.0312 |  |
|                 |                 | 410185.2187 | 4018276.3691 |  |
|                 |                 | 410173.0000 | 4018290.9414 |  |

| Phase 9/10 Area |                 |             |              |  |
|-----------------|-----------------|-------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |
|                 |                 | 410154.6222 | 4018301.9333 |  |
|                 |                 | 410154.4062 | 4018302.0625 |  |
|                 |                 | 410136.2812 | 4018315.9316 |  |
|                 |                 | 410122.0625 | 4018334.2773 |  |
|                 |                 | 410104.0312 | 4018346.9629 |  |
|                 |                 | 410103.7150 | 4018347.2933 |  |
|                 |                 | 410102.3437 | 4018348.7265 |  |
|                 |                 | 410101.5625 | 4018348.8203 |  |
|                 |                 | 410101.1562 | 4018349.9668 |  |
|                 |                 | 410089.0000 | 4018362.6172 |  |
|                 |                 | 410074.5625 | 4018372.7851 |  |
|                 |                 | 410055.0312 | 4018379.0000 |  |
|                 |                 | 410036.4062 | 4018388.1269 |  |
|                 |                 | 410036.2417 | 4018388.2575 |  |
|                 |                 | 410018.7500 | 4018402.1328 |  |
|                 |                 | 410014.5625 | 4018424.6855 |  |
|                 |                 | 410017.2744 | 4018437.9767 |  |
|                 |                 | 410018.8437 | 4018445.6679 |  |
|                 |                 | 410019.5000 | 4018451.7129 |  |
|                 |                 | 410019.5070 | 4018451.7791 |  |
|                 |                 | 410021.0937 | 4018466.8027 |  |
|                 |                 | 410019.7187 | 4018483.4375 |  |
|                 |                 | 410013.0000 | 4018484.7089 |  |
|                 |                 | 410003.4062 | 4018486.5175 |  |
|                 |                 | 409987.0625 | 4018479.4375 |  |
|                 |                 | 409970.6250 | 4018474.0664 |  |
|                 |                 | 409970.1250 | 4018473.9004 |  |
|                 |                 | 409968.0937 | 4018473.3925 |  |
|                 |                 | 409955.5312 | 4018470.2812 |  |
|                 |                 | 409950.9687 | 4018455.2617 |  |
|                 |                 | 409952.2812 | 4018451.4765 |  |
|                 |                 | 409956.8750 | 4018438.2812 |  |
|                 |                 | 409943.2500 | 4018425.9902 |  |
|                 |                 | 409939.5313 | 4018421.0313 |  |
|                 |                 | 409931.5938 | 4018410.4102 |  |
|                 |                 | 409913.3438 | 4018401.5430 |  |
|                 |                 | 409893.1250 | 4018403.2188 |  |
|                 |                 | 409880.5938 | 4018406.2031 |  |
|                 |                 | 409817.6875 | 4018421.0469 |  |
|                 |                 | 409784.9552 | 4018426.7287 |  |
|                 |                 | 409782.2500 | 4018427.0957 |  |
|                 |                 | 409762.8125 | 4018430.5723 |  |
|                 |                 | 409744.7188 | 4018437.5410 |  |
|                 |                 | 409687.8750 | 4018482.5137 |  |
|                 |                 | 409632.0625 | 4018509.0020 |  |
|                 |                 | 409597.8125 | 4018525.2168 |  |
|                 |                 | 409566.8750 | 4018531.2968 |  |

| Exhibit 1 - PM10 Contro | I Areas and Coordinates |
|-------------------------|-------------------------|
|-------------------------|-------------------------|

| Area ID | Area (sq miles) | UTM X       | UTM Y        |
|---------|-----------------|-------------|--------------|
|         |                 | 409563.5934 | 4018537.1404 |
|         |                 | 409557.5000 | 4018547.9902 |
|         |                 | 409554.3437 | 4018571.9843 |
|         |                 | 409542.9062 | 4018614.6425 |
|         |                 | 409521.1562 | 4018692.6875 |
|         |                 | 409518.0312 | 4018711.2324 |
|         |                 | 409517.3750 | 4018715.2363 |
|         |                 | 409522.0312 | 4018733.2187 |
|         |                 | 409527.5625 | 4018740.9648 |
|         |                 | 409564.9687 | 4018745.6347 |
|         |                 | 409578.4062 | 4018749.1738 |
|         |                 | 409593.3437 | 4018750.5722 |
|         |                 | 409607.9062 | 4018756.4629 |
|         |                 | 409617.5312 | 4018768.0390 |
|         |                 | 409625.2500 | 4018781.6093 |
|         |                 | 409637.8125 | 4018784.3828 |
|         |                 | 409637.7812 | 4018771.4902 |
|         |                 | 409643.2812 | 4018759.6464 |
|         |                 | 409658.0625 | 4018752.2910 |
|         |                 | 409673.4687 | 4018745.3359 |
|         |                 | 409687.9687 | 4018737.3886 |
|         |                 | 409703.0312 | 4018731.7773 |
|         |                 | 409718.5312 | 4018737.2461 |
|         |                 | 409734.6250 | 4018739.4726 |
|         |                 | 409748.8125 | 4018747.4531 |
|         |                 | 409755.9756 | 4018753.2742 |
|         |                 | 409761.6250 | 4018757.8652 |
|         |                 | 409769.0000 | 4018772.5293 |
|         |                 | 409782.4063 | 4018782.1055 |
|         |                 | 409797.4688 | 4018788.6426 |
|         |                 | 409812.5625 | 4018792.3906 |
|         |                 | 409826.0313 | 4018790.3164 |
|         |                 | 409840.4063 | 4018787.2441 |
|         |                 | 409853.3125 | 4018781.9316 |
|         |                 | 409862.6875 | 4018790.6914 |
|         |                 | 409860.2500 | 4018805.6211 |
|         |                 | 409861.2188 | 4018821.0000 |
|         |                 | 409871.9375 | 4018829.6211 |
|         |                 | 409885.2188 | 4018826.2676 |
|         |                 | 409889.6875 | 4018812.8047 |
|         |                 | 409893.7500 | 4018798.0879 |
|         |                 | 409898.1901 | 4018791.7561 |
|         |                 | 409902.7812 | 4018785.2089 |
|         |                 | 409913.0312 | 4018774.0722 |
|         |                 | 409922.2812 | 4018765.1035 |
|         |                 | 409933.7812 | 4018769.5039 |
|         |                 | 409945.6250 | 4018766.9316 |

| Phase 9/10 Area |                 |             |              |  |
|-----------------|-----------------|-------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |
|                 |                 | 409956.1035 | 4018765.2943 |  |
|                 |                 | 409959.8125 | 4018764.7148 |  |
|                 |                 | 409966.9310 | 4018765.4660 |  |
|                 |                 | 409973.2500 | 4018766.1328 |  |
|                 |                 | 409980.1557 | 4018765.8153 |  |
|                 |                 | 409986.8437 | 4018765.5078 |  |
|                 |                 | 409995.0625 | 4018759.4550 |  |
|                 |                 | 410003.5937 | 4018706.9765 |  |
|                 |                 | 410004.5635 | 4018681.2253 |  |
|                 |                 | 410004.5663 | 4018681.1495 |  |
|                 |                 | 410005.1250 | 4018666.3145 |  |
|                 |                 | 410005.7187 | 4018650.2050 |  |
|                 |                 | 410009.2529 | 4018640.2979 |  |
|                 |                 | 410011.4375 | 4018634.1738 |  |
|                 |                 | 410029.4130 | 4018591.3744 |  |
|                 |                 | 410031.0849 | 4018587.3936 |  |
| DuckPond-L2     | 0.01            | 410798.9822 | 4018560.5659 |  |
|                 |                 | 410707.4687 | 4018560.7851 |  |
|                 |                 | 410589.2500 | 4018552.7656 |  |
|                 |                 | 410532.6250 | 4018542.4589 |  |
|                 |                 | 410466.6439 | 4018498.9629 |  |
|                 |                 | 410451.4062 | 4018488.9179 |  |
|                 |                 | 410354.2812 | 4018478.9472 |  |
|                 |                 | 410231.3437 | 4018479.4785 |  |
|                 |                 | 410200.8750 | 4018490.8964 |  |
|                 |                 | 410190.5346 | 4018524.4617 |  |
|                 |                 | 410188.2812 | 4018558.3593 |  |
|                 |                 | 410187.4375 | 4018569.9804 |  |
|                 |                 | 410184.2389 | 4018576.9366 |  |
|                 |                 | 410182.6875 | 4018580.3104 |  |
|                 |                 | 410182.4375 | 4018580.8613 |  |
|                 |                 | 410181.7183 | 4018580.3297 |  |
|                 |                 | 410173.5937 | 4018580.4902 |  |
|                 |                 | 410161.5000 | 4018578.6796 |  |
|                 |                 | 410147.9687 | 4018578.0117 |  |
|                 |                 | 410131.4062 | 4018580.0039 |  |
|                 |                 | 410114.6250 | 4018580.8418 |  |
|                 |                 | 410099.0625 | 4018580.7675 |  |
|                 |                 | 410090.4430 | 4018581.0267 |  |
|                 |                 | 410084.2500 | 4018581.2128 |  |
|                 |                 | 4100/5.5312 | 4018580.8203 |  |
|                 |                 | 410064.1562 | 4018581.6230 |  |
|                 |                 | 410061.7811 | 4018580.7016 |  |
|                 |                 | 410032.3437 | 4018584.3964 |  |
|                 |                 | 410031.0849 | 4018587.3936 |  |
|                 |                 | 410610.8819 | 4018578.0027 |  |
| l               |                 | 410611.9688 | 4018575.4198 |  |

| Area ID   Area (sq miles)   UTM X   UTM     410614.5938   4018563   4018563     410626.0313   4018566   410642.1875   4018572     410659.9375   4018574   410659.9375   4018574     410677.8438   4018575   4018573   4018573     410690.0938   4018573   4018573   4018573 | Y<br>.3379<br>.1347<br>.1054<br>.7617<br>.7363<br>.8925<br>.6582<br>.8046<br>.425 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 410614.5938   4018563     410626.0313   4018566     410642.1875   4018572     410659.9375   4018574     410677.8438   4018575     410690.0938   4018573     410703.0313   4018572                                                                                           | .3379<br>.1347<br>.1054<br>.7617<br>.7363<br>.8925<br>.6582<br>.8046              |
| 410626.0313 4018566   410642.1875 4018572   410659.9375 4018574   410677.8438 4018575   410690.0938 4018573   410703.0313 4018572                                                                                                                                           | .1347<br>.1054<br>.7617<br>.7363<br>.8925<br>.6582<br>.8046                       |
| 410642.1875   4018572     410659.9375   4018574     410677.8438   4018575     410690.0938   4018573     410703.0313   4018572                                                                                                                                               | .1054<br>.7617<br>.7363<br>.8925<br>.6582<br>.8046                                |
| 410659.9375 4018574<br>410677.8438 4018575<br>410690.0938 4018573<br>410703.0313 4018572                                                                                                                                                                                    | .7617<br>.7363<br>.8925<br>.6582<br>.8046                                         |
| 410677.8438 4018575<br>410690.0938 4018573<br>410703.0313 4018572                                                                                                                                                                                                           | .7363<br>.8925<br>.6582<br>.8046                                                  |
| 410690.0938 4018573<br>410703.0313 4018572                                                                                                                                                                                                                                  | .8925<br>.6582<br>.8046                                                           |
| 410703 0313 4018572                                                                                                                                                                                                                                                         | .6582<br>.8046                                                                    |
| 410705.0515 4010572                                                                                                                                                                                                                                                         | .8046                                                                             |
| 410717.3437 4018571                                                                                                                                                                                                                                                         | 6425                                                                              |
| 410736.9688 4018572                                                                                                                                                                                                                                                         | .0425                                                                             |
| 410754.8750 4018573                                                                                                                                                                                                                                                         | .5390                                                                             |
| 410764.6562 4018574                                                                                                                                                                                                                                                         | .2909                                                                             |
| 410780.1250 4018575                                                                                                                                                                                                                                                         | .4472                                                                             |
| 410795.2813 4018572                                                                                                                                                                                                                                                         | .1855                                                                             |
| 410798.9822 4018560                                                                                                                                                                                                                                                         | .5659                                                                             |
| T10-3-L1 0.49 414525.4449 4027872                                                                                                                                                                                                                                           | .6930                                                                             |
| 414603.3991 4027348                                                                                                                                                                                                                                                         | .4000                                                                             |
| 414666.3683 4027314                                                                                                                                                                                                                                                         | .2564                                                                             |
| 414704.5839 4027293                                                                                                                                                                                                                                                         | .5349                                                                             |
| 414829.7448 4027225                                                                                                                                                                                                                                                         | .6694                                                                             |
| 414946.0613 4027212                                                                                                                                                                                                                                                         | .3252                                                                             |
| 414946.8125 4027212                                                                                                                                                                                                                                                         | .2390                                                                             |
| 414946.7384 4027212                                                                                                                                                                                                                                                         | .0856                                                                             |
| 414809.4765 4026927                                                                                                                                                                                                                                                         | .9082                                                                             |
| 414777.6428 4026862                                                                                                                                                                                                                                                         | .0020                                                                             |
| 414628.2736 4026552                                                                                                                                                                                                                                                         | .7589                                                                             |
| 414626.7335 4026550                                                                                                                                                                                                                                                         | .4892                                                                             |
| 414581.3692 4026483                                                                                                                                                                                                                                                         | .6358                                                                             |
| 414580.1326 4026481                                                                                                                                                                                                                                                         | .8134                                                                             |
| 414575.1058 4026474                                                                                                                                                                                                                                                         | .4055                                                                             |
| 414574.5451 4026473                                                                                                                                                                                                                                                         | .5792                                                                             |
| 414521.1467 4026419                                                                                                                                                                                                                                                         | .0833                                                                             |
| 414474.4641 4026371                                                                                                                                                                                                                                                         | .4413                                                                             |
| 414468.2236 4026365                                                                                                                                                                                                                                                         | .1107                                                                             |
| 414364.4695 4026259                                                                                                                                                                                                                                                         | .8586                                                                             |
| 414361.5358 4026256                                                                                                                                                                                                                                                         | .8825                                                                             |
| 414294.0026 4026188                                                                                                                                                                                                                                                         | .3743                                                                             |
| 414280.6829 4026176                                                                                                                                                                                                                                                         | .7292                                                                             |
| 414237.0681 4026138                                                                                                                                                                                                                                                         | .5977                                                                             |
| 414202.5256 4026108                                                                                                                                                                                                                                                         | .3980                                                                             |
| 414103.3906 4026021                                                                                                                                                                                                                                                         | .7264                                                                             |
| 414058.1609 4025988                                                                                                                                                                                                                                                         | .9880                                                                             |
| 414054.0898 4025986                                                                                                                                                                                                                                                         | .0412                                                                             |
| 414047.8003 4025981                                                                                                                                                                                                                                                         | .4887                                                                             |
| 413892.4598 4025869                                                                                                                                                                                                                                                         | .0491                                                                             |
| 413843.4527 4025859                                                                                                                                                                                                                                                         | .0182                                                                             |
| 413829.2680 4025901                                                                                                                                                                                                                                                         | .0240                                                                             |
| 413769.3260 4026077                                                                                                                                                                                                                                                         | .6510                                                                             |

| Phase 9/10 Area |                 |             |              |  |
|-----------------|-----------------|-------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |
|                 |                 | 413766.8293 | 4026102.6406 |  |
|                 |                 | 413774.2520 | 4026130.8220 |  |
|                 |                 | 413773.2640 | 4026153.3100 |  |
|                 |                 | 413768.6080 | 4026169.1760 |  |
|                 |                 | 413769.9440 | 4026206.0330 |  |
|                 |                 | 413764.4600 | 4026229.3150 |  |
|                 |                 | 413761.1130 | 4026315.1330 |  |
|                 |                 | 413762.1840 | 4026336.2360 |  |
|                 |                 | 413793.8360 | 4026337.1470 |  |
|                 |                 | 413799.1127 | 4026344.1542 |  |
|                 |                 | 413795.9790 | 4026355.3210 |  |
|                 |                 | 413798.2401 | 4026395.5489 |  |
|                 |                 | 413810.6940 | 4026397.6650 |  |
|                 |                 | 413814.6230 | 4026411.5210 |  |
|                 |                 | 413816.3460 | 4026445.6330 |  |
|                 |                 | 413813.8690 | 4026457.9570 |  |
|                 |                 | 413813.8570 | 4026485.0170 |  |
|                 |                 | 413822.1490 | 4026499.9920 |  |
|                 |                 | 413823.9760 | 4026565.8770 |  |
|                 |                 | 413826.1880 | 4026583.3080 |  |
|                 |                 | 413822.6220 | 4026599.2050 |  |
|                 |                 | 413823.7540 | 4026625.8900 |  |
|                 |                 | 413823.6980 | 4026659.2300 |  |
|                 |                 | 413831.9430 | 4026671.6870 |  |
|                 |                 | 413842.7170 | 4026687.9070 |  |
|                 |                 | 413849.7370 | 4026705.4350 |  |
|                 |                 | 413858.0210 | 4026720.3030 |  |
|                 |                 | 413864.8300 | 4026737.6330 |  |
|                 |                 | 413900.5600 | 4026768.0750 |  |
|                 |                 | 413894.8410 | 4026776.8640 |  |
|                 |                 | 413897.2290 | 4026786.7260 |  |
|                 |                 | 413911.2500 | 4026787.5200 |  |
|                 |                 | 413928.8340 | 4026806.7060 |  |
|                 |                 | 413942.1370 | 4026813.8660 |  |
|                 |                 | 413954.7110 | 4026821.2980 |  |
|                 |                 | 413954.6945 | 4026850.0205 |  |
|                 |                 | 413949.8200 | 4026865.9560 |  |
|                 |                 | 413932.9030 | 4026868.5760 |  |
|                 |                 | 413922.8230 | 4026872.6790 |  |
|                 |                 | 413869.4860 | 4026876.7850 |  |
|                 |                 | 413859.9980 | 4026887.3760 |  |
|                 |                 | 413856.9980 | 4026902.6120 |  |
|                 |                 | 413868.5760 | 4026914.8210 |  |
|                 |                 | 413880.3510 | 4026928.0390 |  |
|                 |                 | 413900.4850 | 4026936.5090 |  |
|                 |                 | 413919.7430 | 4026943.6490 |  |
|                 |                 | 413930.3390 | 4026950.4550 |  |

| Phase 9/10 Area |                 |             |              |  |
|-----------------|-----------------|-------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |
|                 |                 | 413936.2790 | 4026967.1950 |  |
|                 |                 | 413937.8340 | 4026983.6500 |  |
|                 |                 | 413948.4310 | 4027009.1230 |  |
|                 |                 | 413956.7560 | 4027025.5370 |  |
|                 |                 | 413965.5510 | 4027032.4080 |  |
|                 |                 | 413963.0570 | 4027060.0540 |  |
|                 |                 | 413957.6050 | 4027084.4780 |  |
|                 |                 | 413959.7010 | 4027096.0250 |  |
|                 |                 | 413967.7620 | 4027104.8610 |  |
|                 |                 | 413978.3090 | 4027109.4140 |  |
|                 |                 | 413987.6000 | 4027103.8290 |  |
|                 |                 | 414013.2630 | 4027104.3590 |  |
|                 |                 | 414035.4440 | 4027111.8120 |  |
|                 |                 | 414046.0470 | 4027119.5470 |  |
|                 |                 | 414062.0140 | 4027127.3130 |  |
|                 |                 | 414080.7920 | 4027132.4770 |  |
|                 |                 | 414097.1890 | 4027138.9150 |  |
|                 |                 | 414107.5030 | 4027143.0070 |  |
|                 |                 | 414117.2610 | 4027147.5140 |  |
|                 |                 | 414117.9868 | 4027150.2423 |  |
|                 |                 | 414123.8820 | 4027172.4030 |  |
|                 |                 | 414117.1900 | 4027185.9450 |  |
|                 |                 | 414108.9260 | 4027190.1904 |  |
|                 |                 | 414099.8110 | 4027194.8730 |  |
|                 |                 | 414096.4400 | 4027215.2820 |  |
|                 |                 | 414089.9220 | 4027235.2340 |  |
|                 |                 | 414083.7370 | 4027243.7960 |  |
|                 |                 | 414077.7010 | 4027260.6910 |  |
|                 |                 | 414072.9140 | 4027271.6330 |  |
|                 |                 | 414067.7740 | 4027280.1930 |  |
|                 |                 | 414052.4860 | 4027287.2320 |  |
|                 |                 | 414041.1880 | 4027289.2530 |  |
|                 |                 | 414024.5660 | 4027291.9670 |  |
|                 |                 | 414002.5650 | 4027309.4960 |  |
|                 |                 | 413989.4380 | 4027321.2290 |  |
|                 |                 | 413983.0380 | 4027339.5380 |  |
|                 |                 | 413972.5920 | 4027356.7900 |  |
|                 |                 | 413961.3010 | 4027372.3260 |  |
|                 |                 | 413950.8350 | 4027392.4680 |  |
|                 |                 | 413948.6340 | 4027404.9760 |  |
|                 |                 | 413940.4080 | 4027414.5520 |  |
|                 |                 | 413921.6940 | 4027428.1910 |  |
|                 |                 | 413933.3400 | 4027448.7420 |  |
|                 |                 | 413941.7030 | 4027462.0890 |  |
|                 |                 | 413954.1560 | 4027484.8490 |  |
|                 |                 | 413965.1680 | 4027492.3790 |  |
|                 |                 | 413974.1510 | 4027529.3630 |  |

| Phase 9/10 Area |                 |             |              |  |
|-----------------|-----------------|-------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |
|                 |                 | 413981.8210 | 4027549.7810 |  |
|                 |                 | 413994.7960 | 4027555.4150 |  |
|                 |                 | 414009.3540 | 4027565.0360 |  |
|                 |                 | 414026.2990 | 4027583.1480 |  |
|                 |                 | 414051.7640 | 4027604.5520 |  |
|                 |                 | 414072.4060 | 4027617.4380 |  |
|                 |                 | 414087.2730 | 4027635.8180 |  |
|                 |                 | 414094.1170 | 4027644.6930 |  |
|                 |                 | 414099.7487 | 4027648.1666 |  |
|                 |                 | 414103.2320 | 4027650.3150 |  |
|                 |                 | 414103.0520 | 4027659.4080 |  |
|                 |                 | 414111.1230 | 4027679.4510 |  |
|                 |                 | 414131.1575 | 4027709.6455 |  |
|                 |                 | 414137.5800 | 4027719.3250 |  |
|                 |                 | 414146.7760 | 4027732.4730 |  |
|                 |                 | 414151.9075 | 4027740.9051 |  |
|                 |                 | 414159.1334 | 4027742.4894 |  |
|                 |                 | 414167.6240 | 4027744.3510 |  |
|                 |                 | 414176.2720 | 4027740.3740 |  |
|                 |                 | 414187.0540 | 4027736.3470 |  |
|                 |                 | 414198.4250 | 4027745.3200 |  |
|                 |                 | 414200.6060 | 4027756.1820 |  |
|                 |                 | 414207.5960 | 4027779.8570 |  |
|                 |                 | 414216.6760 | 4027799.1990 |  |
|                 |                 | 414224.2310 | 4027814.6090 |  |
|                 |                 | 414235.0980 | 4027828.8040 |  |
|                 |                 | 414275.1810 | 4027863.5300 |  |
|                 |                 | 414286.5747 | 4027873.8534 |  |
|                 |                 | 414297.5260 | 4027883.7760 |  |
|                 |                 | 414297.8098 | 4027883.9169 |  |
|                 |                 | 414315.6990 | 4027892.7980 |  |
|                 |                 | 414330.5710 | 4027902.9550 |  |
|                 |                 | 414370.1950 | 4027920.8980 |  |
|                 |                 | 414381.9180 | 4027926.2160 |  |
|                 |                 | 414394.0920 | 4027957.3720 |  |
|                 |                 | 414406.4329 | 4027941.2416 |  |
|                 |                 | 414428.1750 | 4027912.8230 |  |
|                 |                 | 414499.9870 | 4027893.3960 |  |
|                 |                 | 414513.9410 | 4027875.5850 |  |
|                 |                 | 414525.4449 | 4027872.6930 |  |
| T10-L1          | 0.06            | 417550.0640 | 4023881.8302 |  |
|                 |                 | 417491.8761 | 4023844.6200 |  |
|                 |                 | 417432.5938 | 4023823.1348 |  |
|                 |                 | 417406.6889 | 4023841.7865 |  |
|                 |                 | 417404.5313 | 4023842.9277 |  |
|                 |                 | 417401.1064 | 4023845.8060 |  |
| 1               |                 | 417398.8438 | 4023845.8750 |  |

| Phase 9/10 Area |                 |             |              |  |
|-----------------|-----------------|-------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |
|                 |                 | 417387.4375 | 4023846.9883 |  |
|                 |                 | 417377.4063 | 4023848.7207 |  |
|                 |                 | 417373.9911 | 4023849.5536 |  |
|                 |                 | 417367.8438 | 4023851.0000 |  |
|                 |                 | 417363.5497 | 4023852.4464 |  |
|                 |                 | 417358.9375 | 4023853.9434 |  |
|                 |                 | 417350.9375 | 4023857.4238 |  |
|                 |                 | 417347.9675 | 4023859.0146 |  |
|                 |                 | 417343.0938 | 4023861.5000 |  |
|                 |                 | 417335.2813 | 4023866.7500 |  |
|                 |                 | 417334.1271 | 4023867.6364 |  |
|                 |                 | 417330.9375 | 4023867.5996 |  |
|                 |                 | 417322.1875 | 4023869.0977 |  |
|                 |                 | 417323.3403 | 4023876.4640 |  |
|                 |                 | 417319.6875 | 4023879.7500 |  |
|                 |                 | 417310.5938 | 4023888.9688 |  |
|                 |                 | 417301.9688 | 4023899.1680 |  |
|                 |                 | 417298.6438 | 4023903.5500 |  |
|                 |                 | 417293.6563 | 4023910.0000 |  |
|                 |                 | 417286.2813 | 4023921.5000 |  |
|                 |                 | 417285.7344 | 4023922.4546 |  |
|                 |                 | 417281.1250 | 4023930.3848 |  |
|                 |                 | 417276.9063 | 4023939.6543 |  |
|                 |                 | 417273.1563 | 4023949.9414 |  |
|                 |                 | 417271.6830 | 4023954.8214 |  |
|                 |                 | 417269.7188 | 4023961.2500 |  |
|                 |                 | 417266.5000 | 4023975.5000 |  |
|                 |                 | 417263.6563 | 4023992.2500 |  |
|                 |                 | 417261.2488 | 4024009.7315 |  |
|                 |                 | 417257.5625 | 4024036.4043 |  |
|                 |                 | 417256.6438 | 4024045.0105 |  |
|                 |                 | 41/255./813 | 4024053.0000 |  |
|                 |                 | 417254.3444 | 4024071.4844 |  |
|                 |                 | 417254.3436 | 4024071.5000 |  |
|                 |                 | 417253.3443 | 4024112.0000 |  |
|                 |                 | 417253.3441 | 4024112.0410 |  |
|                 |                 | 41/253.68/5 | 4024135.5000 |  |
|                 |                 | 41/255.38/3 | 4024181.7966 |  |
|                 |                 | 417255.3750 | 4024181.8125 |  |
|                 |                 | 417250.0938 | 4024188.6699 |  |
|                 |                 | 41/245./188 | 4024206.3731 |  |
|                 |                 | 417250.9092 | 4024218.8867 |  |
|                 |                 | 417258.1250 | 4024230.5580 |  |
|                 |                 | 41/203./812 | 4024236.7032 |  |
|                 |                 | 417260.0000 | 4024251.1309 |  |
|                 |                 | 417209.0000 | 4024207.9277 |  |
| 1               | l               | 41/2/7.5625 | 4024282.9609 |  |

| Phase 9/10 Area |                 |                            |              |  |
|-----------------|-----------------|----------------------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X                      | UTM Y        |  |
|                 |                 | 417277.4688                | 4024300.6270 |  |
|                 |                 | 417280.5938                | 4024358.7793 |  |
|                 |                 | 417282.1250                | 4024375.4063 |  |
|                 |                 | 417285.8125                | 4024392.4238 |  |
|                 |                 | 417287.3438                | 4024410.4102 |  |
|                 |                 | 417289.7500                | 4024428.7559 |  |
|                 |                 | 417300.5625                | 4024444.2070 |  |
|                 |                 | 417305.9375                | 4024459.5820 |  |
|                 |                 | 417310.6563                | 4024474.8535 |  |
|                 |                 | 417322.5000                | 4024483.1133 |  |
|                 |                 | 417333.2813                | 4024492.4785 |  |
|                 |                 | 417361.0938                | 4024493.2520 |  |
|                 |                 | 417376.7188                | 4024486.8066 |  |
|                 |                 | 417388.3125                | 4024474.5840 |  |
|                 |                 | 417392.8438                | 4024457.3848 |  |
|                 |                 | 417400.8438                | 4024441.6406 |  |
|                 |                 | 417409.6250                | 4024426.0449 |  |
|                 |                 | 417413.8750                | 4024408.6758 |  |
|                 |                 | 417410.5625                | 4024391.0352 |  |
|                 |                 | 417407.2188                | 4024373.8281 |  |
|                 |                 | 417415.2188                | 4024358.4316 |  |
|                 |                 | 417428.4688                | 4024345.1348 |  |
|                 |                 | 417437.3125                | 4024327.9512 |  |
|                 |                 | 417440.1563                | 4024309.4434 |  |
|                 |                 | 417446.3750                | 4024292.7773 |  |
|                 |                 | 417458.0313                | 4024278.2344 |  |
|                 |                 | 417469.2813                | 4024264.1680 |  |
|                 |                 | 417484.2500                | 4024254.3535 |  |
|                 |                 | 417498.4688                | 4024242.7949 |  |
|                 |                 | 417498.5437                | 4024242.7227 |  |
|                 |                 | 41/558./235                | 4024192.5258 |  |
|                 |                 | 41/582.1322                | 4024165.5897 |  |
|                 |                 | 41/614.8309                | 4024120.6349 |  |
|                 |                 | 41/620.55/2                | 4024112.7622 |  |
|                 |                 | 41/646.5625                | 4024066.9434 |  |
|                 |                 | 417656.8125                | 4024054.6660 |  |
|                 |                 | 417656.8125                | 4024053.9609 |  |
|                 |                 | 417656.8128                | 4024053.9378 |  |
|                 |                 | 41/656.8135                | 4024053.8927 |  |
|                 |                 | 417657.0938                | 4024034.7207 |  |
|                 |                 | 417055.5938                | 4024017.8535 |  |
|                 |                 | 417620.0938                | 4024000.1/// |  |
|                 |                 | 41/029.0025                | 4023935.6406 |  |
|                 |                 | 41/021.0000                | 4023920./108 |  |
|                 |                 | 417008.2188<br>417502 0275 | 4023918.3123 |  |
|                 |                 | 41/392.93/3                | 4023910.2/93 |  |
| 1               | l               | 41/550.0640                | 4023881.8302 |  |

| Phase 9/10 Area |                 |             |              |  |
|-----------------|-----------------|-------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |
| T17-2-L1        | 0.12            | 419265.6563 | 4029152.4160 |  |
|                 |                 | 419053.1875 | 4028867.2344 |  |
|                 |                 | 418728.2813 | 4028430.3242 |  |
|                 |                 | 418722.1875 | 4028434.7051 |  |
|                 |                 | 418703.3750 | 4028437.6113 |  |
|                 |                 | 418680.8125 | 4028447.9473 |  |
|                 |                 | 418676.5938 | 4028450.9375 |  |
|                 |                 | 418674.2813 | 4028451.2168 |  |
|                 |                 | 418664.3125 | 4028457.7617 |  |
|                 |                 | 418660.2500 | 4028462.5137 |  |
|                 |                 | 418660.2188 | 4028462.5254 |  |
|                 |                 | 418638.8750 | 4028479.9082 |  |
|                 |                 | 418638.1563 | 4028480.3301 |  |
|                 |                 | 418634.0938 | 4028482.5215 |  |
|                 |                 | 418621.2188 | 4028489.2559 |  |
|                 |                 | 418609.7188 | 4028497.1602 |  |
|                 |                 | 418601.2813 | 4028504.0840 |  |
|                 |                 | 418601.6563 | 4028503.9395 |  |
|                 |                 | 418601.5938 | 4028504.0488 |  |
|                 |                 | 418601.3750 | 4028504.1934 |  |
|                 |                 | 418598.5938 | 4028507.4434 |  |
|                 |                 | 418596.1250 | 4028509.4160 |  |
|                 |                 | 418584.2188 | 4028525.0977 |  |
|                 |                 | 418580.7188 | 4028530.0801 |  |
|                 |                 | 418580.1875 | 4028530.3770 |  |
|                 |                 | 418578.4063 | 4028533.3984 |  |
|                 |                 | 418570.1250 | 4028545.2070 |  |
|                 |                 | 418569.4688 | 4028546.6484 |  |
|                 |                 | 418565.5938 | 4028551.4981 |  |
|                 |                 | 418565.3125 | 4028552.3945 |  |
|                 |                 | 418559.5625 | 4028562.7246 |  |
|                 |                 | 418551.6250 | 4028575.1992 |  |
|                 |                 | 418539.2188 | 4028627.8965 |  |
|                 |                 | 418524.0938 | 4028708.4375 |  |
|                 |                 | 418520.7813 | 4028730.8281 |  |
|                 |                 | 418502.0625 | 4028752.2461 |  |
|                 |                 | 418496.8750 | 4028756.9395 |  |
|                 |                 | 418496.8438 | 4028756.9844 |  |
|                 |                 | 418496.5938 | 4028756.8008 |  |
|                 |                 | 418494.7188 | 4028760.0723 |  |
|                 |                 | 418494.0938 | 4028761.0039 |  |
|                 |                 | 418493.0938 | 4028762.8887 |  |
|                 |                 | 418487.2500 | 4028772.9844 |  |
|                 |                 | 418475.8750 | 4028792.9961 |  |
|                 |                 | 418471.0000 | 4028801.4629 |  |
|                 |                 | 418469.1250 | 4028804.2422 |  |
|                 |                 | 418466.1875 | 4028809.8301 |  |

| Phase 9/10 Area |                 |             |              |  |
|-----------------|-----------------|-------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |
|                 |                 | 418464.6250 | 4028811.8184 |  |
|                 |                 | 418462.2500 | 4028816.1504 |  |
|                 |                 | 418462.0625 | 4028816.4043 |  |
|                 |                 | 418461.3125 | 4028817.9063 |  |
|                 |                 | 418458.3750 | 4028823.2715 |  |
|                 |                 | 418449.0313 | 4028841.5430 |  |
|                 |                 | 418442.6563 | 4028852.5977 |  |
|                 |                 | 418442.2500 | 4028853.2813 |  |
|                 |                 | 418442.2188 | 4028853.3281 |  |
|                 |                 | 418439.5000 | 4028858.0840 |  |
|                 |                 | 418435.1563 | 4028865.5527 |  |
|                 |                 | 418421.8750 | 4028887.7285 |  |
|                 |                 | 418409.2813 | 4028909.4512 |  |
|                 |                 | 418402.2813 | 4028918.5664 |  |
|                 |                 | 418403.4688 | 4028924.1250 |  |
|                 |                 | 418406.3125 | 4028924.7207 |  |
|                 |                 | 418406.1250 | 4028926.3691 |  |
|                 |                 | 418425.3438 | 4028932.8164 |  |
|                 |                 | 418448.0313 | 4028940.3438 |  |
|                 |                 | 418471.4688 | 4028948.4356 |  |
|                 |                 | 418496.0625 | 4028956.0762 |  |
|                 |                 | 418519.5938 | 4028965.4629 |  |
|                 |                 | 418543.4688 | 4028974.0664 |  |
|                 |                 | 418558.3125 | 4028978.1367 |  |
|                 |                 | 418559.6563 | 4028978.6289 |  |
|                 |                 | 418560.0938 | 4028978.6250 |  |
|                 |                 | 418563.4688 | 4028979.5508 |  |
|                 |                 | 418568.6250 | 4028979.1816 |  |
|                 |                 | 418574.5625 | 4028981.1914 |  |
|                 |                 | 418575.4375 | 4028982.5371 |  |
|                 |                 | 418575.5313 | 4028982.4453 |  |
|                 |                 | 418583.1563 | 4028989.5234 |  |
|                 |                 | 418591.9688 | 4028996.3711 |  |
|                 |                 | 418597.2813 | 4029000.5430 |  |
|                 |                 | 418642.1875 | 4029024.3945 |  |
|                 |                 | 418665.8438 | 4029033.3867 |  |
|                 |                 | 418697.6875 | 4029043.9512 |  |
|                 |                 | 418731.6250 | 4029055.7832 |  |
|                 |                 | 418768.2500 | 4029068.1465 |  |
|                 |                 | 418802.2813 | 4029079.1816 |  |
|                 |                 | 418836.2813 | 4029091.3516 |  |
|                 |                 | 418871.5938 | 4029102.8867 |  |
|                 |                 | 418905.1250 | 4029114.3223 |  |
|                 |                 | 418921.4688 | 4029120.4512 |  |
|                 |                 | 418945.6250 | 4029128.2676 |  |
|                 |                 | 418982.5313 | 4029140.7832 |  |
|                 |                 | 419022.2188 | 4029154.0684 |  |

| Phase 9/10 Area |                 |             |              |  |
|-----------------|-----------------|-------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |
|                 |                 | 419059.9688 | 4029167.3906 |  |
|                 |                 | 419099.0938 | 4029180.6953 |  |
|                 |                 | 419140.2500 | 4029194.4121 |  |
|                 |                 | 419180.0313 | 4029207.9473 |  |
|                 |                 | 419215.6250 | 4029220.5000 |  |
|                 |                 | 419236.5000 | 4029216.8945 |  |
|                 |                 | 419238.6875 | 4029208.1816 |  |
|                 |                 | 419243.2188 | 4029190.2520 |  |
|                 |                 | 419251.0000 | 4029170.3809 |  |
|                 |                 | 419266.3125 | 4029154.2773 |  |
|                 |                 | 419265.6563 | 4029152.4160 |  |
| T21-L1          | 0.58            | 421681.3538 | 4033175.4977 |  |
|                 |                 | 421680.5833 | 4033146.5036 |  |
|                 |                 | 421615.4529 | 4032859.4383 |  |
|                 |                 | 421642.8450 | 4032720.0067 |  |
|                 |                 | 421669.5739 | 4032583.9514 |  |
|                 |                 | 421672.6950 | 4032568.0642 |  |
|                 |                 | 421758.8199 | 4032529.2147 |  |
|                 |                 | 421765.7569 | 4032526.0855 |  |
|                 |                 | 421697.5464 | 4032435.8333 |  |
|                 |                 | 421697.6948 | 4032435.3497 |  |
|                 |                 | 421670.3086 | 4032396.8373 |  |
|                 |                 | 421569.2500 | 4032259.9922 |  |
|                 |                 | 421363.7119 | 4031994.1301 |  |
|                 |                 | 421339.4293 | 4032013.5080 |  |
|                 |                 | 421144.0336 | 4032169.4369 |  |
|                 |                 | 421144.0312 | 4032169.4629 |  |
|                 |                 | 421000.8019 | 4032283.7380 |  |
|                 |                 | 420847.2185 | 4032406.3000 |  |
|                 |                 | 420754.8980 | 4032462.5738 |  |
|                 |                 | 420597.1630 | 4032558.7211 |  |
|                 |                 | 420519.7444 | 4032605.9176 |  |
|                 |                 | 420399.6563 | 4032679.1270 |  |
|                 |                 | 420338.1250 | 4032670.5020 |  |
|                 |                 | 420278.7230 | 4032824.8330 |  |
|                 |                 | 420268.6708 | 4032850.9495 |  |
|                 |                 | 420242.1858 | 4032883.6401 |  |
|                 |                 | 420238.1250 | 4032888.6523 |  |
|                 |                 | 420224.9228 | 4032905.2489 |  |
|                 |                 | 420193.0625 | 4032945.3008 |  |
|                 |                 | 420165.5938 | 4032977.7578 |  |
|                 |                 | 420162.7669 | 4032996.9399 |  |
|                 |                 | 420162.3109 | 4033000.0345 |  |
|                 |                 | 420161 3125 | 4033002 9452 |  |
|                 |                 | 420161 6104 | 4033004 7879 |  |
|                 |                 | 420160 6230 | 4033011 4880 |  |
|                 |                 | 420100.0250 | 4033144 4336 |  |
| I               | 1               | 720171.0313 | 4033144.4330 |  |

| Phase 9/10 Area |                 |             |              |  |
|-----------------|-----------------|-------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |
|                 |                 | 420140.7813 | 4033147.0859 |  |
|                 |                 | 420141.1996 | 4033148.5249 |  |
|                 |                 | 420143.4558 | 4033203.3550 |  |
|                 |                 | 420143.5374 | 4033205.3387 |  |
|                 |                 | 420144.0937 | 4033218.8593 |  |
|                 |                 | 420144.4633 | 4033220.3903 |  |
|                 |                 | 420147.4490 | 4033232.7596 |  |
|                 |                 | 420153.7104 | 4033258.6996 |  |
|                 |                 | 420173.6875 | 4033341.4609 |  |
|                 |                 | 420174.9951 | 4033345.4837 |  |
|                 |                 | 420175.2050 | 4033346.1296 |  |
|                 |                 | 420177.5797 | 4033353.4352 |  |
|                 |                 | 420186.9793 | 4033382.3528 |  |
|                 |                 | 420196.2248 | 4033410.7966 |  |
|                 |                 | 420200.5000 | 4033423.9492 |  |
|                 |                 | 420208.1891 | 4033433.2144 |  |
|                 |                 | 420223.8529 | 4033452.0889 |  |
|                 |                 | 420231.9037 | 4033461.7901 |  |
|                 |                 | 420385.1563 | 4033492.7617 |  |
|                 |                 | 420395.0145 | 4033495.6276 |  |
|                 |                 | 420401.9865 | 4033497.6543 |  |
|                 |                 | 420413.6562 | 4033501.0468 |  |
|                 |                 | 420427.3129 | 4033493.4316 |  |
|                 |                 | 420447.8534 | 4033481.9780 |  |
|                 |                 | 420449.1875 | 4033481.7383 |  |
|                 |                 | 420460.4375 | 4033474.9609 |  |
|                 |                 | 420487.7500 | 4033452.4140 |  |
|                 |                 | 420517.0008 | 4033438.1465 |  |
|                 |                 | 420539.4687 | 4033427.1875 |  |
|                 |                 | 420600.0313 | 4033422.4414 |  |
|                 |                 | 420657.7231 | 4033463.9297 |  |
|                 |                 | 420657.7295 | 4033463.9343 |  |
|                 |                 | 420665.7051 | 4033469.6699 |  |
|                 |                 | 420678.7685 | 4033479.0642 |  |
|                 |                 | 420680.8189 | 4033481.0229 |  |
|                 |                 | 420681.5000 | 4033481.8359 |  |
|                 |                 | 420682.0937 | 4033482.4921 |  |
|                 |                 | 420085.4002 | 4033485.9570 |  |
|                 |                 | 420685.5938 | 4033486.1601 |  |
|                 |                 | 420000.403/ | 4033404.3982 |  |
|                 |                 | 420033.3373 | 4033400.0793 |  |
|                 |                 | 420717.0900 | 4033302.0030 |  |
|                 |                 | 420/1/.43/3 | 4033302.1332 |  |
|                 |                 | 420727.9005 | 4033304.2963 |  |
|                 |                 | 420730.3337 | 4033310.4700 |  |
|                 |                 | 420771.4002 | 4033312.3040 |  |
| 1               | 1               | 420/03.3002 | 4033309.2030 |  |

| Phase 9/10 Area |                 |             |              |
|-----------------|-----------------|-------------|--------------|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |
|                 |                 | 420801.6305 | 4033494.5087 |
|                 |                 | 420922.1111 | 4033381.4411 |
|                 |                 | 420922.5938 | 4033381.6054 |
|                 |                 | 420922.8279 | 4033380.7684 |
|                 |                 | 420922.8832 | 4033380.5707 |
|                 |                 | 420925.1180 | 4033372.5814 |
|                 |                 | 420926.0313 | 4033369.3164 |
|                 |                 | 420925.8380 | 4033369.1089 |
|                 |                 | 420925.2390 | 4033368.4656 |
|                 |                 | 420924.4903 | 4033367.6616 |
|                 |                 | 420925.3378 | 4033360.9801 |
|                 |                 | 420926.0065 | 4033355.7077 |
|                 |                 | 420928.4060 | 4033336.7903 |
|                 |                 | 420931.8125 | 4033309.9335 |
|                 |                 | 420934.0937 | 4033294.3827 |
|                 |                 | 420933.1563 | 4033286.8906 |
|                 |                 | 420933.0079 | 4033286.3887 |
|                 |                 | 420933.2906 | 4033280.8201 |
|                 |                 | 420934.1039 | 4033264.8003 |
|                 |                 | 420934.6255 | 4033254.5274 |
|                 |                 | 420936.6875 | 4033213.9141 |
|                 |                 | 420939.2159 | 4033185.1852 |
|                 |                 | 420941.8338 | 4033155.4399 |
|                 |                 | 420945.9610 | 4033108.5460 |
|                 |                 | 420961.0398 | 4033090.9540 |
|                 |                 | 421000.4203 | 4033087.0715 |
|                 |                 | 421003.7903 | 4033086.7392 |
|                 |                 | 421006.9062 | 4033088.8632 |
|                 |                 | 421008.2187 | 4033088.2890 |
|                 |                 | 421016.2812 | 4033085.5078 |
|                 |                 | 421026.4497 | 4033089.4725 |
|                 |                 | 421111.6444 | 4033122.6896 |
|                 |                 | 421120.9062 | 4033126.3007 |
|                 |                 | 421156.2164 | 4033165.7803 |
|                 |                 | 421185.2500 | 4033198.2422 |
|                 |                 | 421217.8062 | 4033213.5770 |
|                 |                 | 421220.8437 | 4033215.0078 |
|                 |                 | 421260.1030 | 4033214.0976 |
|                 |                 | 421276.4384 | 4033232.9462 |
|                 |                 | 421275.1818 | 4033266.8735 |
|                 |                 | 421227.5312 | 4033321.5781 |
|                 |                 | 421226.5937 | 4033325.8281 |
|                 |                 | 421225.7812 | 4033326.3632 |
|                 |                 | 421225.7583 | 4033327.2740 |
|                 |                 | 421225.7500 | 4033327.6015 |
|                 |                 | 421225.7053 | 4033327.6434 |
|                 |                 | 421225.6250 | 4033327.7188 |

| Phase 9/10 Area                                                                                                 |                 |             |              |
|-----------------------------------------------------------------------------------------------------------------|-----------------|-------------|--------------|
| Area ID                                                                                                         | Area (sq miles) | UTM X       | UTM Y        |
|                                                                                                                 |                 | 421224.3750 | 4033341.4766 |
|                                                                                                                 |                 | 421225.4375 | 4033348.0078 |
|                                                                                                                 |                 | 421262.4688 | 4033473.2813 |
|                                                                                                                 |                 | 421296.7148 | 4033532.0450 |
|                                                                                                                 |                 | 421296.8750 | 4033533.2305 |
|                                                                                                                 |                 | 421298.0873 | 4033534.4719 |
|                                                                                                                 |                 | 421298.1910 | 4033534.5781 |
|                                                                                                                 |                 | 421298.5144 | 4033535.1329 |
|                                                                                                                 |                 | 421299.1563 | 4033536.2344 |
|                                                                                                                 |                 | 421325.6875 | 4033569.8984 |
|                                                                                                                 |                 | 421667.0073 | 4033278.2092 |
|                                                                                                                 |                 | 421683.3131 | 4033249.2211 |
|                                                                                                                 |                 | 421681.3538 | 4033175.4977 |
| T21-L2                                                                                                          | 0.22            | 422355.2617 | 4031806.6465 |
|                                                                                                                 |                 | 422592.1981 | 4031994.7332 |
|                                                                                                                 |                 | 422592.2681 | 4031994.7888 |
|                                                                                                                 |                 | 422706.9375 | 4032059.7129 |
|                                                                                                                 |                 | 422723.9063 | 4032064.2676 |
|                                                                                                                 |                 | 422743.0000 | 4032064.9160 |
|                                                                                                                 |                 | 422750.9688 | 4032066.0098 |
|                                                                                                                 |                 | 422762.7813 | 4032059.0234 |
|                                                                                                                 |                 | 422780.2500 | 4032057.0488 |
|                                                                                                                 |                 | 422785.9063 | 4032056.4102 |
|                                                                                                                 |                 | 422787.2500 | 4032056.6426 |
|                                                                                                                 |                 | 422789.2188 | 4032056.0371 |
|                                                                                                                 |                 | 422798.4063 | 4032055.0020 |
|                                                                                                                 |                 | 422803.7813 | 4032052.6738 |
|                                                                                                                 |                 | 422819.4375 | 4032024.1758 |
|                                                                                                                 |                 | 422782.8438 | 4031909.1758 |
|                                                                                                                 |                 | 422762.3750 | 4031844.7949 |
|                                                                                                                 |                 | 422760.7813 | 4031839.7871 |
|                                                                                                                 |                 | 422737.0923 | 4031776.4887 |
|                                                                                                                 |                 | 422736.6258 | 4031775.2422 |
|                                                                                                                 |                 | 422736.2497 | 4031756.2669 |
|                                                                                                                 |                 | 422736.0128 | 4031744.3181 |
|                                                                                                                 |                 | 422735.8080 | 4031733.9876 |
|                                                                                                                 |                 | 422735.4900 | 4031717.9484 |
|                                                                                                                 |                 | 422735.0625 | 4031696.3828 |
|                                                                                                                 |                 | 422680.8437 | 4031591.6054 |
|                                                                                                                 |                 | 422683.1729 | 4031470.4752 |
|                                                                                                                 |                 | 422651.0344 | 4031345.6709 |
|                                                                                                                 |                 | 422556.9952 | 4031186.7779 |
|                                                                                                                 |                 | 422547.0581 | 4031169.9878 |
|                                                                                                                 |                 | 422537.2791 | 4031153.4648 |
|                                                                                                                 |                 | 422423.6318 | 4030950.1465 |
|                                                                                                                 |                 | 422374.4375 | 4030862.1364 |
|                                                                                                                 |                 | 422306.7034 | 4030741.4598 |
| I Constant and the second s | 1               |             |              |

| Phase 9/10 Area |                 |             |              |  |
|-----------------|-----------------|-------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |
|                 |                 | 422287.9036 | 4030707.9656 |  |
|                 |                 | 422270.1646 | 4030676.3614 |  |
|                 |                 | 422265.5625 | 4030668.1621 |  |
|                 |                 | 422229.6875 | 4030618.2598 |  |
|                 |                 | 422219.6875 | 4030598.5430 |  |
|                 |                 | 422179.5625 | 4030586.6953 |  |
|                 |                 | 422137.6875 | 4030584.5976 |  |
|                 |                 | 422081.3437 | 4030558.1641 |  |
|                 |                 | 422055.1563 | 4030549.5840 |  |
|                 |                 | 422036.4875 | 4030526.8295 |  |
|                 |                 | 422017.7812 | 4030504.0293 |  |
|                 |                 | 422017.1875 | 4030502.8340 |  |
|                 |                 | 422005.7500 | 4030495.0605 |  |
|                 |                 | 422002.6562 | 4030493.6054 |  |
|                 |                 | 421987.0313 | 4030490.0781 |  |
|                 |                 | 421960.8438 | 4030498.2148 |  |
|                 |                 | 421959.9691 | 4030498.8625 |  |
|                 |                 | 421958.6250 | 4030499.7597 |  |
|                 |                 | 421952.6250 | 4030504.3008 |  |
|                 |                 | 421943.8125 | 4030514.3359 |  |
|                 |                 | 421939.1563 | 4030535.4160 |  |
|                 |                 | 421906.0625 | 4030624.2657 |  |
|                 |                 | 421905.8750 | 4030681.7520 |  |
|                 |                 | 421917.6875 | 4030743.1250 |  |
|                 |                 | 421979.9063 | 4030822.8203 |  |
|                 |                 | 422000.3125 | 4030866.1621 |  |
|                 |                 | 422040.0000 | 4030920.2246 |  |
|                 |                 | 422071.7188 | 4031037.7227 |  |
|                 |                 | 422078.8437 | 4031057.9609 |  |
|                 |                 | 422086.2500 | 4031077.9824 |  |
|                 |                 | 422093.7188 | 4031097.2930 |  |
|                 |                 | 422101.8125 | 4031116.7129 |  |
|                 |                 | 422143.6875 | 4031189.1074 |  |
|                 |                 | 422157.1250 | 4031224.5703 |  |
|                 |                 | 422184.9688 | 4031280.4258 |  |
|                 |                 | 422195.2188 | 4031296.0430 |  |
|                 |                 | 422197.8268 | 4031297.8575 |  |
|                 |                 | 422198.1250 | 4031298.2656 |  |
|                 |                 | 422198.3906 | 4031298.2498 |  |
|                 |                 | 422260.4688 | 4031341.4394 |  |
|                 |                 | 422267.4120 | 4031351.3946 |  |
|                 |                 | 422272.5625 | 4031358.7793 |  |
|                 |                 | 422281.2812 | 4031378.1543 |  |
|                 |                 | 422274.2177 | 4031400.4159 |  |
|                 |                 | 422256.5625 | 4031456.0586 |  |
|                 |                 | 422253.9062 | 4031458.9609 |  |
|                 |                 | 422254.0295 | 4031459.5487 |  |

| Phase 9/10 Area |                 |                             |                      |  |
|-----------------|-----------------|-----------------------------|----------------------|--|
| Area ID         | Area (sq miles) | UTM X                       | UTM Y                |  |
|                 |                 | 422254.0312                 | 4031459.5566         |  |
|                 |                 | 422253.2187                 | 4031460.6660         |  |
|                 |                 | 422253.9375                 | 4031462.0683         |  |
|                 |                 | 422253.5937                 | 4031462.6191         |  |
|                 |                 | 422254.8909                 | 4031473.2921         |  |
|                 |                 | 422251.7087                 | 4031506.0989         |  |
|                 |                 | 422249.0937                 | 4031533.0586         |  |
|                 |                 | 422247.8125                 | 4031563.2207         |  |
|                 |                 | 422252.7680                 | 4031573.8470         |  |
|                 |                 | 422253.3119                 | 4031575.0133         |  |
|                 |                 | 422263.3458                 | 4031596.5297         |  |
|                 |                 | 422274.8437                 | 4031621.1855         |  |
|                 |                 | 422325.9062                 | 4031691.4257         |  |
|                 |                 | 422377.0000                 | 4031739.3144         |  |
|                 |                 | 422377.0000                 | 4031756.2384         |  |
|                 |                 | 422377.0000                 | 4031777.6270         |  |
|                 |                 | 422375.1250                 | 4031781.4063         |  |
|                 |                 | 422355.2617                 | 4031806.6465         |  |
| T21-L3          | 0.16            | 421681.3538                 | 4033175.4977         |  |
|                 |                 | 421683.3131                 | 4033249.2211         |  |
|                 |                 | 421667.0073                 | 4033278.2092         |  |
|                 |                 | 421325.6875                 | 4033569.8984         |  |
|                 |                 | 421337.3438                 | 4033573.5957         |  |
|                 |                 | 421348.0625                 | 4033589.7070         |  |
|                 |                 | 421353.7188                 | 4033610.9844         |  |
|                 |                 | 421350.7188                 | 4033619.8516         |  |
|                 |                 | 421340.8750                 | 4033617.4961         |  |
|                 |                 | 421342.6888                 | 4033638.0295         |  |
|                 |                 | 421342.2188                 | 4033649.4024         |  |
|                 |                 | 421344.9063                 | 4033663.1328         |  |
|                 |                 | 421353.7032                 | 4033666.4219         |  |
|                 |                 | 421350.5020                 | 4033083.2240         |  |
|                 |                 | 421357.2500                 | 4033095.3510         |  |
|                 |                 | 421557.0000                 | 4033723.4029         |  |
|                 |                 | 421555.2100                 | 4033743.7203         |  |
|                 |                 | 421507.1550                 | 4033700.3083         |  |
|                 |                 | 421373.3437                 | 4033747.4922         |  |
|                 |                 | 421300.3782                 | 4033738.4330         |  |
|                 |                 | 421330.3201<br>A21380 1771  | 4033767 0/17         |  |
|                 |                 | 421303.1771                 | 4033775 5202         |  |
|                 |                 | 421388 0937                 | 4033786 0586         |  |
|                 |                 | 421308.0937                 | 4033797 9895         |  |
|                 |                 | 421300.3007<br>A71288 2/127 | 4033798 <u>4</u> 101 |  |
|                 |                 | 421388 4062                 | 4033798 5000         |  |
|                 |                 | 421388 5937                 | 4033806 9375         |  |
|                 |                 | 421391 7455                 | 4033807 1188         |  |
| 1               | I               | 721331.7433                 | +055007.1100         |  |

| Phase 9/10 Area |                 |             |              |  |
|-----------------|-----------------|-------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |
|                 |                 | 421391.8203 | 4033807.3154 |  |
|                 |                 | 421392.2089 | 4033807.3332 |  |
|                 |                 | 421392.4687 | 4033807.9296 |  |
|                 |                 | 421393.7352 | 4033807.4030 |  |
|                 |                 | 421408.1563 | 4033808.0625 |  |
|                 |                 | 421431.4375 | 4033804.7969 |  |
|                 |                 | 421437.0421 | 4033805.5893 |  |
|                 |                 | 421467.1079 | 4033814.9518 |  |
|                 |                 | 421467.2566 | 4033814.9981 |  |
|                 |                 | 421467.6250 | 4033815.1757 |  |
|                 |                 | 421467.5937 | 4033815.2070 |  |
|                 |                 | 421467.8125 | 4033815.2734 |  |
|                 |                 | 421470.2500 | 4033816.4414 |  |
|                 |                 | 421470.8437 | 4033816.1796 |  |
|                 |                 | 421475.9193 | 4033817.6978 |  |
|                 |                 | 421476.0937 | 4033817.7500 |  |
|                 |                 | 421507.5496 | 4033802.0096 |  |
|                 |                 | 421525.4375 | 4033793.0585 |  |
|                 |                 | 421557.1950 | 4033790.3410 |  |
|                 |                 | 421572.0868 | 4033789.0667 |  |
|                 |                 | 421590.6250 | 4033787.4804 |  |
|                 |                 | 421608.0077 | 4033783.9971 |  |
|                 |                 | 421619.3570 | 4033786.1881 |  |
|                 |                 | 421626.5402 | 4033787.3951 |  |
|                 |                 | 421635.4925 | 4033787.2683 |  |
|                 |                 | 421641.0366 | 4033785.6417 |  |
|                 |                 | 421644.3490 | 4033795.2713 |  |
|                 |                 | 421643.7696 | 4033804.2922 |  |
|                 |                 | 421641.1584 | 4033816.0019 |  |
|                 |                 | 421639.8440 | 4033826.3449 |  |
|                 |                 | 421635.8801 | 4033836.7091 |  |
|                 |                 | 421632.3219 | 4033843.9715 |  |
|                 |                 | 421635.4373 | 4033850.0944 |  |
|                 |                 | 421650.5821 | 4033872.2859 |  |
|                 |                 | 421652.6197 | 4033875.2716 |  |
|                 |                 | 421656.0434 | 4033883.0405 |  |
|                 |                 | 421815.0124 | 4033817.5358 |  |
|                 |                 | 421821.7338 | 4033823.3113 |  |
|                 |                 | 421825.1344 | 4033833.6057 |  |
|                 |                 | 421825.1586 | 4033844.0972 |  |
|                 |                 | 421828.6209 | 4033853.7005 |  |
|                 |                 | 421831.2069 | 4033865.4808 |  |
|                 |                 | 421840.6401 | 4033868.5665 |  |
|                 |                 | 421849.1875 | 4033864.5559 |  |
|                 |                 | 421861.4905 | 4033869.2576 |  |
|                 |                 | 421870.4155 | 4033865.4724 |  |
|                 |                 | 421882.9527 | 4033862.8097 |  |

| Phase 9/10 Area |                 |             |              |
|-----------------|-----------------|-------------|--------------|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |
|                 |                 | 421897.4917 | 4033860.1399 |
|                 |                 | 421904.5251 | 4033864.7053 |
|                 |                 | 421916.7480 | 4033869.7255 |
|                 |                 | 421927.9963 | 4033871.1454 |
|                 |                 | 421938.0470 | 4033873.4798 |
|                 |                 | 421950.8317 | 4033878.1297 |
|                 |                 | 421960.2882 | 4033878.2885 |
|                 |                 | 421971.6928 | 4033883.7259 |
|                 |                 | 421981.6913 | 4033878.9210 |
|                 |                 | 421996.3310 | 4033870.6050 |
|                 |                 | 422009.1723 | 4033859.4988 |
|                 |                 | 422011.5803 | 4033853.0010 |
|                 |                 | 422012.8878 | 4033849.4728 |
|                 |                 | 422017.2076 | 4033845.0204 |
|                 |                 | 422017.2935 | 4033844.9319 |
|                 |                 | 422020.5628 | 4033839.1590 |
|                 |                 | 422024.5346 | 4033827.5918 |
|                 |                 | 422026.1756 | 4033816.2211 |
|                 |                 | 422020.7079 | 4033808.8057 |
|                 |                 | 422011.3152 | 4033811.5365 |
|                 |                 | 422002.4601 | 4033809.7484 |
|                 |                 | 422001.1644 | 4033801.0568 |
|                 |                 | 422001.1532 | 4033800.9817 |
|                 |                 | 421992.5010 | 4033795.5881 |
|                 |                 | 421984.0740 | 4033800.3783 |
|                 |                 | 421983.9137 | 4033800.3841 |
|                 |                 | 421972.9042 | 4033800.7808 |
|                 |                 | 421975.3936 | 4033793.8987 |
|                 |                 | 421979.1253 | 4033785.5857 |
|                 |                 | 421981.5495 | 4033775.2535 |
|                 |                 | 421980.7289 | 4033770.9823 |
|                 |                 | 421980.4211 | 4033769.3799 |
|                 |                 | 421973.7300 | 4033761.9837 |
|                 |                 | 421973.2791 | 4033761.4853 |
|                 |                 | 421972.1063 | 4033751.4194 |
|                 |                 | 421973.3260 | 4033745.9242 |
|                 |                 | 421974.0544 | 4033742.6426 |
|                 |                 | 421979.1361 | 4033/33./866 |
|                 |                 | 421980.7452 | 4033725.8332 |
|                 |                 | 421979.5661 | 4033719.2661 |
|                 |                 | 4219/3.4134 | 4033713.1999 |
|                 |                 | 42190/.81/3 | 4033/11.05/4 |
|                 |                 | 421904.150/ | 4033708.4748 |
|                 |                 | 421901.1099 | 4033705.8780 |
|                 |                 | 421900.1243 | 4033090.400/ |
|                 |                 | 421905.8012 | 4033092.1762 |
| 1               | 1               | 421970.0931 | 4033690.0608 |

| Phase 9/10 Area |                 |             |              |  |  |  |
|-----------------|-----------------|-------------|--------------|--|--|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |  |  |
|                 |                 | 421980.6143 | 4033688.9731 |  |  |  |
|                 |                 | 421988.5415 | 4033688.4598 |  |  |  |
|                 |                 | 421998.0473 | 4033686.6421 |  |  |  |
|                 |                 | 422006.3557 | 4033686.3910 |  |  |  |
|                 |                 | 422016.2491 | 4033687.9296 |  |  |  |
|                 |                 | 422024.2668 | 4033691.2074 |  |  |  |
|                 |                 | 422031.1895 | 4033696.5703 |  |  |  |
|                 |                 | 422038.6330 | 4033699.2169 |  |  |  |
|                 |                 | 422049.5891 | 4033701.1525 |  |  |  |
|                 |                 | 422062.4299 | 4033700.5623 |  |  |  |
|                 |                 | 422072.4037 | 4033700.1082 |  |  |  |
|                 |                 | 422080.6334 | 4033700.4474 |  |  |  |
|                 |                 | 422087.1016 | 4033700.2761 |  |  |  |
|                 |                 | 422094.0021 | 4033699.9198 |  |  |  |
|                 |                 | 422107.3423 | 4033700.3998 |  |  |  |
|                 |                 | 422115.8217 | 4033696.7180 |  |  |  |
|                 |                 | 422120.8667 | 4033686.1297 |  |  |  |
|                 |                 | 422122.9285 | 4033677.6255 |  |  |  |
|                 |                 | 422127.5932 | 4033670.6240 |  |  |  |
|                 |                 | 422133.6283 | 4033666.1255 |  |  |  |
|                 |                 | 422144.1333 | 4033662.2180 |  |  |  |
|                 |                 | 422148.6320 | 4033658.7623 |  |  |  |
|                 |                 | 422146.4703 | 4033651.7194 |  |  |  |
|                 |                 | 422136.6773 | 4033649.1883 |  |  |  |
|                 |                 | 422126.5214 | 4033654.3374 |  |  |  |
|                 |                 | 422116.4330 | 4033655.3419 |  |  |  |
|                 |                 | 422114.2782 | 4033648.5226 |  |  |  |
|                 |                 | 422103.3853 | 4033645.5553 |  |  |  |
|                 |                 | 422100.7640 | 4033635.3872 |  |  |  |
|                 |                 | 422109.6710 | 4033624.9497 |  |  |  |
|                 |                 | 422106.0714 | 4033610.4672 |  |  |  |
|                 |                 | 422097.7836 | 4033612.8259 |  |  |  |
|                 |                 | 422086.4797 | 4033617.3840 |  |  |  |
|                 |                 | 422076.8310 | 4033612.0243 |  |  |  |
|                 |                 | 422069.6830 | 4033608.2939 |  |  |  |
|                 |                 | 422068.1048 | 4033600.2682 |  |  |  |
|                 |                 | 422070.7961 | 4033594.6110 |  |  |  |
|                 |                 | 422076.4092 | 4033589.0905 |  |  |  |
|                 |                 | 422086.4236 | 4033582.5941 |  |  |  |
|                 |                 | 422094.9721 | 4033577.4356 |  |  |  |
|                 |                 | 422099.8992 | 4033567.4788 |  |  |  |
|                 |                 | 422101.7457 | 4033560.6932 |  |  |  |
|                 |                 | 422102.9795 | 4033554.2022 |  |  |  |
|                 |                 | 422101.9369 | 4033543.0252 |  |  |  |
|                 |                 | 422091.9876 | 4033540.6676 |  |  |  |
|                 |                 | 422081.1628 | 4033547.1483 |  |  |  |
|                 |                 | 422076.0186 | 4033537.1299 |  |  |  |

| Phase 9/10 Area |                 |             |              |  |  |  |
|-----------------|-----------------|-------------|--------------|--|--|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |  |  |
|                 |                 | 422077.3582 | 4033526.4853 |  |  |  |
|                 |                 | 422089.0030 | 4033525.0805 |  |  |  |
|                 |                 | 422098.9131 | 4033521.7941 |  |  |  |
|                 |                 | 422108.1795 | 4033513.4364 |  |  |  |
|                 |                 | 422115.9466 | 4033504.5129 |  |  |  |
|                 |                 | 422120.8971 | 4033493.7021 |  |  |  |
|                 |                 | 422118.1076 | 4033479.0611 |  |  |  |
|                 |                 | 422113.7164 | 4033472.8288 |  |  |  |
|                 |                 | 422110.6834 | 4033464.5756 |  |  |  |
|                 |                 | 422107.2126 | 4033455.7725 |  |  |  |
|                 |                 | 422101.3954 | 4033443.3430 |  |  |  |
|                 |                 | 422108.9339 | 4033430.2451 |  |  |  |
|                 |                 | 422115.2944 | 4033417.8423 |  |  |  |
|                 |                 | 422118.1472 | 4033405.9709 |  |  |  |
|                 |                 | 422129.9964 | 4033396.1217 |  |  |  |
|                 |                 | 422139.8929 | 4033389.8593 |  |  |  |
|                 |                 | 422145.9259 | 4033377.7909 |  |  |  |
|                 |                 | 422132.4500 | 4033366.8283 |  |  |  |
|                 |                 | 422123.6608 | 4033375.4093 |  |  |  |
|                 |                 | 422115.2309 | 4033381.2009 |  |  |  |
|                 |                 | 422106.1155 | 4033371.9270 |  |  |  |
|                 |                 | 422099.8864 | 4033365.5106 |  |  |  |
|                 |                 | 422099.3837 | 4033352.3751 |  |  |  |
|                 |                 | 422100.9061 | 4033338.2579 |  |  |  |
|                 |                 | 422103.0624 | 4033324.5643 |  |  |  |
|                 |                 | 422104.3472 | 4033317.2360 |  |  |  |
|                 |                 | 422102.8931 | 4033308.7865 |  |  |  |
|                 |                 | 422106.4651 | 4033298.1806 |  |  |  |
|                 |                 | 422107.4961 | 4033290.6624 |  |  |  |
|                 |                 | 422111.2775 | 4033280.8407 |  |  |  |
|                 |                 | 422111.8319 | 4033270.2617 |  |  |  |
|                 |                 | 422107.5996 | 4033262.1347 |  |  |  |
|                 |                 | 422102.5389 | 4033258.4160 |  |  |  |
|                 |                 | 422098.4937 | 4033253.8542 |  |  |  |
|                 |                 | 422093.3394 | 4033246.6213 |  |  |  |
|                 |                 | 422087.6756 | 4033241.0610 |  |  |  |
|                 |                 | 422087.9392 | 4033235.0746 |  |  |  |
|                 |                 | 422087.7863 | 4033227.9793 |  |  |  |
|                 |                 | 422090.4422 | 4033218.6231 |  |  |  |
|                 |                 | 422091.1239 | 4033210.4872 |  |  |  |
|                 |                 | 422083.2183 | 4033205.0622 |  |  |  |
|                 |                 | 422077.2351 | 4033201.5231 |  |  |  |
|                 |                 | 422071.5556 | 4033199.2851 |  |  |  |
|                 |                 | 422064.5823 | 4033195.0741 |  |  |  |
|                 |                 | 422056.0822 | 4033193.5265 |  |  |  |
|                 |                 | 422047.8242 | 4033193.5299 |  |  |  |
| 1               | 1               | 422025.7375 | 4033193.5185 |  |  |  |

| Phase 9/10 Area |                 |             |              |  |  |  |
|-----------------|-----------------|-------------|--------------|--|--|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |  |  |
|                 |                 | 422026.1892 | 4033178.9272 |  |  |  |
|                 |                 | 422030.5186 | 4033150.3205 |  |  |  |
|                 |                 | 422027.8469 | 4033132.4328 |  |  |  |
|                 |                 | 422024.7620 | 4033130.1337 |  |  |  |
|                 |                 | 422022.7511 | 4033128.6350 |  |  |  |
|                 |                 | 422021.0685 | 4033127.4847 |  |  |  |
|                 |                 | 422015.3894 | 4033123.6024 |  |  |  |
|                 |                 | 422006.9767 | 4033117.8513 |  |  |  |
|                 |                 | 422004.6276 | 4033115.4819 |  |  |  |
|                 |                 | 421999.0594 | 4033109.5075 |  |  |  |
|                 |                 | 421989.8693 | 4033099.8472 |  |  |  |
|                 |                 | 421978.5849 | 4033089.2141 |  |  |  |
|                 |                 | 421973.8440 | 4033084.4323 |  |  |  |
|                 |                 | 421961.3093 | 4033071.1790 |  |  |  |
|                 |                 | 421960.2017 | 4033070.6722 |  |  |  |
|                 |                 | 421955.7590 | 4033068.6393 |  |  |  |
|                 |                 | 421954.7815 | 4033068.6871 |  |  |  |
|                 |                 | 421953.2106 | 4033067.2688 |  |  |  |
|                 |                 | 421938.5345 | 4033069.6053 |  |  |  |
|                 |                 | 421807.2800 | 4033119.4706 |  |  |  |
|                 |                 | 421787.2775 | 4033131.6011 |  |  |  |
|                 |                 | 421771.3335 | 4033149.0309 |  |  |  |
|                 |                 | 421753.3823 | 4033154.6110 |  |  |  |
|                 |                 | 421751.2529 | 4033155.7844 |  |  |  |
|                 |                 | 421744.9561 | 4033156.4569 |  |  |  |
|                 |                 | 421740.2787 | 4033161.8318 |  |  |  |
|                 |                 | 421739.8847 | 4033162.0490 |  |  |  |
|                 |                 | 421732.3732 | 4033170.4510 |  |  |  |
|                 |                 | 421714.0618 | 4033172.7965 |  |  |  |
|                 |                 | 421697.7144 | 4033177.8108 |  |  |  |
|                 |                 | 421681.3538 | 4033175.4977 |  |  |  |
| T21-L4          | 0.09            | 421332.6602 | 4031948.7768 |  |  |  |
|                 |                 | 421363.6591 | 4031994.0530 |  |  |  |
|                 |                 | 421363.7119 | 4031994.1301 |  |  |  |
|                 |                 | 421569.2500 | 4032259.9922 |  |  |  |
|                 |                 | 421670.3086 | 4032396.8373 |  |  |  |
|                 |                 | 421682.4093 | 4032389.0803 |  |  |  |
|                 |                 | 421694.5070 | 4032360.0904 |  |  |  |
|                 |                 | 421694.7468 | 4032352.0833 |  |  |  |
|                 |                 | 421693.9881 | 4032346.0625 |  |  |  |
|                 |                 | 421692.2021 | 4032335.6053 |  |  |  |
|                 |                 | 421689.7399 | 4032324.9168 |  |  |  |
|                 |                 | 421689.3147 | 4032315.8803 |  |  |  |
|                 |                 | 421691.6528 | 4032305.8870 |  |  |  |
|                 |                 | 421692.6354 | 4032299.5731 |  |  |  |
|                 |                 | 421693.5070 | 4032290.6651 |  |  |  |
| l               | 1               | 421694.3799 | 4032279.8754 |  |  |  |
| Phase 9/10 Area |                 |             |              |
|-----------------|-----------------|-------------|--------------|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |
|                 |                 | 421690.3575 | 4032274.6757 |
|                 |                 | 421684.7524 | 4032237.8263 |
|                 |                 | 421686.6249 | 4032229.2442 |
|                 |                 | 421683.2492 | 4032216.6541 |
|                 |                 | 421677.5625 | 4032207.8156 |
|                 |                 | 421673.5102 | 4032201.5322 |
|                 |                 | 421667.4350 | 4032192.7211 |
|                 |                 | 421663.4474 | 4032179.2393 |
|                 |                 | 421660.1193 | 4032167.1790 |
|                 |                 | 421660.6172 | 4032155.9092 |
|                 |                 | 421660.3095 | 4032146.3649 |
|                 |                 | 421659.9347 | 4032137.0408 |
|                 |                 | 421660.3858 | 4032126.9874 |
|                 |                 | 421660.6580 | 4032119.4315 |
|                 |                 | 421671.4127 | 4032064.3120 |
|                 |                 | 421681.5899 | 4031992.0625 |
|                 |                 | 421682.3623 | 4031986.5794 |
|                 |                 | 421689.6883 | 4031962.7511 |
|                 |                 | 421706.6607 | 4031938.6811 |
|                 |                 | 421762.6978 | 4031837.3530 |
|                 |                 | 421765.3662 | 4031823.7942 |
|                 |                 | 421768.0140 | 4031802.6034 |
|                 |                 | 421772.6023 | 4031788.8286 |
|                 |                 | 421774.6640 | 4031769.5205 |
|                 |                 | 421776.1675 | 4031757.8969 |
|                 |                 | 421776.2667 | 4031757.1298 |
|                 |                 | 421778.3781 | 4031737.6634 |
|                 |                 | 421776.9124 | 4031716.3730 |
|                 |                 | 421782.8388 | 4031696.8350 |
|                 |                 | 421788.8514 | 4031677.6715 |
|                 |                 | 421797.3525 | 4031656.8917 |
|                 |                 | 421806.7336 | 4031643.0568 |
|                 |                 | 421819.5804 | 4031629.6476 |
|                 |                 | 421823.9717 | 4031625.8883 |
|                 |                 | 421828.1038 | 4031614.3553 |
|                 |                 | 421830.1140 | 4031598.4637 |
|                 |                 | 421835.2463 | 4031584.1761 |
|                 |                 | 421835.3749 | 4031583.7936 |
|                 |                 | 421838.7364 | 4031573.7984 |
|                 |                 | 421843.0984 | 4031564.1375 |
|                 |                 | 421845.9583 | 4031549.5613 |
|                 |                 | 421845.7263 | 4031539.8520 |
|                 |                 | 421835.4569 | 4031528.6020 |
|                 |                 | 421820.8268 | 4031520.4979 |
|                 |                 | 421817.8060 | 4031521.0213 |
|                 |                 | 421812.0341 | 4031522.0213 |
|                 |                 | 421798.7070 | 4031526.3489 |

| Phase 9/10 Area |                 |             |              |
|-----------------|-----------------|-------------|--------------|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |
|                 |                 | 421792.3020 | 4031528.5219 |
|                 |                 | 421781.6201 | 4031527.1440 |
|                 |                 | 421770.4360 | 4031533.5609 |
|                 |                 | 421762.6020 | 4031534.6338 |
|                 |                 | 421751.5708 | 4031537.5581 |
|                 |                 | 421745.8850 | 4031539.0977 |
|                 |                 | 421735.3104 | 4031547.0779 |
|                 |                 | 421722.5693 | 4031559.1294 |
|                 |                 | 421718.4833 | 4031563.1533 |
|                 |                 | 421712.8996 | 4031565.8937 |
|                 |                 | 421706.6777 | 4031565.5124 |
|                 |                 | 421700.1310 | 4031557.1728 |
|                 |                 | 421691.8667 | 4031545.0022 |
|                 |                 | 421679.6144 | 4031543.3809 |
|                 |                 | 421667.9481 | 4031541.6010 |
|                 |                 | 421653.5219 | 4031539.1528 |
|                 |                 | 421652.3562 | 4031538.9597 |
|                 |                 | 421633.6192 | 4031535.8565 |
|                 |                 | 421622.9774 | 4031534.3864 |
|                 |                 | 421614.2890 | 4031534.6916 |
|                 |                 | 421607.0773 | 4031540.6380 |
|                 |                 | 421601.3715 | 4031546.7178 |
|                 |                 | 421602.6661 | 4031564.3030 |
|                 |                 | 421602.2850 | 4031578.4099 |
|                 |                 | 421600.4091 | 4031586.9260 |
|                 |                 | 421593.0455 | 4031595.3515 |
|                 |                 | 421583.6789 | 4031596.4376 |
|                 |                 | 421573.8871 | 4031597.2021 |
|                 |                 | 421563.2709 | 4031598.2955 |
|                 |                 | 421551.0553 | 4031602.9082 |
|                 |                 | 421540.4570 | 4031607.2844 |
|                 |                 | 421526.5440 | 4031610.6698 |
|                 |                 | 421519.5461 | 4031615.1546 |
|                 |                 | 421512.1129 | 4031608.7235 |
|                 |                 | 421504.6883 | 4031603.2008 |
|                 |                 | 421494.5662 | 4031607.3591 |
|                 |                 | 421481.4896 | 4031613.5299 |
|                 |                 | 421467.7393 | 4031622.4144 |
|                 |                 | 421461.8037 | 4031629.1372 |
|                 |                 | 421458.2079 | 4031642.2363 |
|                 |                 | 421459.6343 | 4031656.2858 |
|                 |                 | 421456.8945 | 4031661.9327 |
|                 |                 | 421445.4766 | 4031666.8714 |
|                 |                 | 421427.4105 | 4031662.3658 |
|                 |                 | 421416.0194 | 4031667.1383 |
|                 |                 | 421414.5884 | 4031674.9406 |
|                 |                 | 421418.9934 | 4031689.3452 |

| Phase 9/10 Area |                 |             |              |  |
|-----------------|-----------------|-------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |
|                 |                 | 421418.2065 | 4031697.7663 |  |
|                 |                 | 421418.1949 | 4031697.7878 |  |
|                 |                 | 421411.5422 | 4031710.1714 |  |
|                 |                 | 421407.1827 | 4031717.5263 |  |
|                 |                 | 421403.9331 | 4031726.3433 |  |
|                 |                 | 421396.5242 | 4031737.6376 |  |
|                 |                 | 421396.5336 | 4031748.8364 |  |
|                 |                 | 421393.5339 | 4031757.9002 |  |
|                 |                 | 421389.7467 | 4031768.3162 |  |
|                 |                 | 421388.7680 | 4031781.8972 |  |
|                 |                 | 421385.6242 | 4031792.0299 |  |
|                 |                 | 421383.9764 | 4031799.7115 |  |
|                 |                 | 421385.4441 | 4031807.0840 |  |
|                 |                 | 421380.7557 | 4031823.9391 |  |
|                 |                 | 421374.1852 | 4031838.6418 |  |
|                 |                 | 421371.6079 | 4031844.0354 |  |
|                 |                 | 421370.1681 | 4031851.4348 |  |
|                 |                 | 421366.9893 | 4031860.1026 |  |
|                 |                 | 421364.2461 | 4031866.2165 |  |
|                 |                 | 421361.6452 | 4031872.0337 |  |
|                 |                 | 421352.2877 | 4031881.9664 |  |
|                 |                 | 421348.8181 | 4031889.9356 |  |
|                 |                 | 421349.3702 | 4031897.8652 |  |
|                 |                 | 421353.2973 | 4031907.6305 |  |
|                 |                 | 421348.4242 | 4031920.6849 |  |
|                 |                 | 421346.1745 | 4031929.6559 |  |
|                 |                 | 421331.2509 | 4031937.3717 |  |
|                 |                 | 421332.6602 | 4031948.7768 |  |
| T32-1-L1        | 0.94            | 417130.3805 | 4042995.6745 |  |
|                 |                 | 416874.9421 | 4042997.9104 |  |
|                 |                 | 416874.7151 | 4042997.9123 |  |
|                 |                 | 416874.3837 | 4042997.9152 |  |
|                 |                 | 416872.3079 | 4042997.9334 |  |
|                 |                 | 416853.3845 | 4042998.0990 |  |
|                 |                 | 416844.5115 | 4042998.1767 |  |
|                 |                 | 416834.3585 | 4042998.2656 |  |
|                 |                 | 416828.7613 | 4042998.3146 |  |
|                 |                 | 416802.5375 | 4042998.5441 |  |
|                 |                 | 416785.1959 | 4042998.6959 |  |
|                 |                 | 416782.0854 | 4042998.7231 |  |
|                 |                 | 416779.3644 | 4042998.7470 |  |
|                 |                 | 416779.0491 | 4042998.7497 |  |
|                 |                 | 416778.2654 | 4042998.7566 |  |
|                 |                 | 416757.0197 | 4042998.9425 |  |
|                 |                 | 416748.7581 | 4042999.0149 |  |
|                 |                 | 416748.7523 | 4042999.0149 |  |
|                 |                 | 416745.5359 | 4042999.0431 |  |

| Phase 9/10 Area |                 |             |              |  |
|-----------------|-----------------|-------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |
|                 |                 | 416737.3658 | 4042999.1146 |  |
|                 |                 | 416511.9599 | 4043001.0876 |  |
|                 |                 | 416475.6596 | 4043001.4053 |  |
|                 |                 | 416415.9268 | 4043001.9282 |  |
|                 |                 | 416414.7844 | 4042753.4996 |  |
|                 |                 | 416413.9351 | 4042568.7621 |  |
|                 |                 | 416413.9324 | 4042568.1752 |  |
|                 |                 | 416413.9130 | 4042563.9624 |  |
|                 |                 | 416413.9066 | 4042562.5781 |  |
|                 |                 | 416413.8960 | 4042560.2618 |  |
|                 |                 | 416410.1386 | 4042560.3365 |  |
|                 |                 | 416410.0981 | 4042560.3373 |  |
|                 |                 | 416409.8771 | 4042560.3417 |  |
|                 |                 | 416407.4335 | 4042560.3903 |  |
|                 |                 | 416238.8166 | 4042563.7458 |  |
|                 |                 | 416020.8582 | 4042568.1991 |  |
|                 |                 | 416021.0826 | 4042578.9943 |  |
|                 |                 | 416021.3865 | 4042593.6171 |  |
|                 |                 | 416021.7492 | 4042611.0661 |  |
|                 |                 | 416021.5536 | 4042625.6378 |  |
|                 |                 | 416019.1461 | 4042804.9417 |  |
|                 |                 | 416012.4067 | 4043157.1705 |  |
|                 |                 | 416011.6310 | 4043197.7108 |  |
|                 |                 | 416010.8619 | 4043237.9058 |  |
|                 |                 | 416010.8609 | 4043237.9573 |  |
|                 |                 | 416009.4278 | 4043312.8570 |  |
|                 |                 | 415996.8507 | 4043320.6666 |  |
|                 |                 | 415863.2633 | 4043403.6167 |  |
|                 |                 | 415696.9669 | 4043207.9327 |  |
|                 |                 | 415532.3824 | 4043014.2631 |  |
|                 |                 | 415316.6838 | 4043015.0880 |  |
|                 |                 | 415325.3619 | 4043000.2238 |  |
|                 |                 | 415360.9503 | 4042939.2666 |  |
|                 |                 | 415466.1135 | 4042759.1388 |  |
|                 |                 | 415542.5045 | 4042628.2931 |  |
|                 |                 | 415685.2178 | 4042383.8480 |  |
|                 |                 | 415685.9013 | 4042382.6772 |  |
|                 |                 | 415686.0509 | 4042382.4209 |  |
|                 |                 | 415679.5045 | 4042381.9393 |  |
|                 |                 | 415669.5805 | 4042381.2091 |  |
|                 |                 | 415665.8258 | 4042380.6277 |  |
|                 |                 | 415655.9347 | 4042383.9882 |  |
|                 |                 | 415655.6659 | 4042384.0795 |  |
|                 |                 | 415655.4980 | 4042384.0262 |  |
|                 |                 | 415653.613/ | 4042383.4273 |  |
|                 |                 | 415652.9389 | 4042383.2128 |  |
| 1               |                 | 415636.0253 | 4042377.8375 |  |

| Phase 9/10 Area |                 |             |              |  |
|-----------------|-----------------|-------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |
|                 |                 | 415630.5765 | 4042376.1058 |  |
|                 |                 | 415630.5647 | 4042376.1020 |  |
|                 |                 | 415581.2762 | 4042327.1461 |  |
|                 |                 | 415526.4848 | 4042272.7244 |  |
|                 |                 | 415526.1742 | 4042272.4160 |  |
|                 |                 | 415381.2848 | 4042128.5039 |  |
|                 |                 | 415381.2813 | 4042128.5117 |  |
|                 |                 | 415380.3014 | 4042130.6674 |  |
|                 |                 | 415207.4375 | 4042510.9688 |  |
|                 |                 | 415198.6250 | 4042506.9961 |  |
|                 |                 | 415194.4688 | 4042500.9492 |  |
|                 |                 | 415188.8125 | 4042489.9883 |  |
|                 |                 | 415189.5625 | 4042475.2461 |  |
|                 |                 | 415187.3125 | 4042454.0820 |  |
|                 |                 | 415176.7188 | 4042443.8750 |  |
|                 |                 | 415160.0937 | 4042439.3398 |  |
|                 |                 | 415137.4063 | 4042441.6094 |  |
|                 |                 | 415116.6250 | 4042449.9219 |  |
|                 |                 | 415105.2813 | 4042454.0820 |  |
|                 |                 | 415100.3750 | 4042451.4336 |  |
|                 |                 | 415100.7500 | 4042439.7188 |  |
|                 |                 | 415107.1562 | 4042419.3086 |  |
|                 |                 | 415107.1562 | 4042407.5898 |  |
|                 |                 | 415095.8438 | 4042391.7188 |  |
|                 |                 | 415080.7188 | 4042384.9141 |  |
|                 |                 | 415062.9375 | 4042375.4648 |  |
|                 |                 | 415051.2188 | 4042368.6602 |  |
|                 |                 | 415039.5000 | 4042370.9297 |  |
|                 |                 | 415025.1562 | 4042378.4883 |  |
|                 |                 | 415011.1563 | 4042391.3398 |  |
|                 |                 | 415005.5000 | 4042401.5430 |  |
|                 |                 | 414994.1563 | 4042413.2617 |  |
|                 |                 | 414983.9688 | 4042431.4023 |  |
|                 |                 | 414974.5000 | 4042447.2773 |  |
|                 |                 | 414962.7813 | 4042456.3477 |  |
|                 |                 | 414950.6875 | 4042463.1523 |  |
|                 |                 | 414941.6250 | 4042467.6875 |  |
|                 |                 | 414940.8387 | 4042542.5520 |  |
|                 |                 | 414979.1256 | 4042644.0956 |  |
|                 |                 | 415021.5742 | 4042723.1665 |  |
|                 |                 | 415096.4834 | 4042851.3445 |  |
|                 |                 | 415198.02/1 | 4042977.8579 |  |
|                 |                 | 415262.4/11 | 4043039.8008 |  |
|                 |                 | 415267.4292 | 4043044.5665 |  |
|                 |                 | 415293.5017 | 4043069.6271 |  |
|                 |                 | 415303.2187 | 4043076.0821 |  |
| 1               |                 | 415322.8125 | 4043088.8867 |  |

| Phase 9/10 Area |                 |             |              |  |
|-----------------|-----------------|-------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |
|                 |                 | 415342.1563 | 4043102.2773 |  |
|                 |                 | 415361.1875 | 4043115.0156 |  |
|                 |                 | 415370.8957 | 4043120.2930 |  |
|                 |                 | 415372.0174 | 4043121.0065 |  |
|                 |                 | 415377.3750 | 4043124.4141 |  |
|                 |                 | 415401.0660 | 4043138.8041 |  |
|                 |                 | 415409.0313 | 4043144.0860 |  |
|                 |                 | 415427.3898 | 4043155.1458 |  |
|                 |                 | 415446.5457 | 4043167.2021 |  |
|                 |                 | 415448.0566 | 4043168.1932 |  |
|                 |                 | 415483.6875 | 4043192.0586 |  |
|                 |                 | 415491.5926 | 4043197.4737 |  |
|                 |                 | 415519.0937 | 4043216.3125 |  |
|                 |                 | 415541.2221 | 4043230.7747 |  |
|                 |                 | 415564.1250 | 4043246.0703 |  |
|                 |                 | 415566.8079 | 4043247.7982 |  |
|                 |                 | 415588.9062 | 4043262.8437 |  |
|                 |                 | 415597.1221 | 4043268.3788 |  |
|                 |                 | 415604.2869 | 4043273.2057 |  |
|                 |                 | 415640.3728 | 4043297.5169 |  |
|                 |                 | 415581.9980 | 4043383.2661 |  |
|                 |                 | 415581.8819 | 4043383.4366 |  |
|                 |                 | 415499.7456 | 4043504.0903 |  |
|                 |                 | 415410.7239 | 4043634.8580 |  |
|                 |                 | 415406.6252 | 4043640.8788 |  |
|                 |                 | 415405.2197 | 4043642.9433 |  |
|                 |                 | 415432.6720 | 4043804.8033 |  |
|                 |                 | 415436.6986 | 4043889.3616 |  |
|                 |                 | 415440.8828 | 4043977.2311 |  |
|                 |                 | 415416.7852 | 4044097.9308 |  |
|                 |                 | 415410.2813 | 4044130.5077 |  |
|                 |                 | 415383.9094 | 4044194.0515 |  |
|                 |                 | 415308.0000 | 4044376.9570 |  |
|                 |                 | 415302.5938 | 4044388.6406 |  |
|                 |                 | 415293.1250 | 4044396.9335 |  |
|                 |                 | 415254.2813 | 4044433.7304 |  |
|                 |                 | 415196.6835 | 4044508.1803 |  |
|                 |                 | 415125.3150 | 4044522.9378 |  |
|                 |                 | 415089.1511 | 4044528.5689 |  |
|                 |                 | 415036.4110 | 4044529.7884 |  |
|                 |                 | 414966.2940 | 4044529.4835 |  |
|                 |                 | 414963.7285 | 4044530.0457 |  |
|                 |                 | 414952.7563 | 4044532.4504 |  |
|                 |                 | 414901.1823 | 4044543.7532 |  |
|                 |                 | 414877.4635 | 4044551.2350 |  |
|                 |                 | 414853.8747 | 4044558.6757 |  |
|                 |                 | 414841.8345 | 4044561.0587 |  |

| Phase 9/10 Area |                 |                            |              |  |
|-----------------|-----------------|----------------------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X                      | UTM Y        |  |
|                 |                 | 414772.5946                | 4044574.7624 |  |
|                 |                 | 414740.0569                | 4044577.8320 |  |
|                 |                 | 414637.9743                | 4044587.4625 |  |
|                 |                 | 414499.1207                | 4044591.6958 |  |
|                 |                 | 414427.3490                | 4044594.9786 |  |
|                 |                 | 414378.8662                | 4044592.9092 |  |
|                 |                 | 414322.6706                | 4044590.0980 |  |
|                 |                 | 414288.5312                | 4044582.7890 |  |
|                 |                 | 414276.8125                | 4044575.6367 |  |
|                 |                 | 414179.7188                | 4044619.9257 |  |
|                 |                 | 414159.0313                | 4044624.5038 |  |
|                 |                 | 414155.0167                | 4044626.9932 |  |
|                 |                 | 414120.4375                | 4044636.8867 |  |
|                 |                 | 414100.8750                | 4044641.5077 |  |
|                 |                 | 414062.3750                | 4044647.7929 |  |
|                 |                 | 414060.9596                | 4044647.9407 |  |
|                 |                 | 414006.1875                | 4044653.6602 |  |
|                 |                 | 413985.5000                | 4044654.8242 |  |
|                 |                 | 413963.7188                | 4044655.1914 |  |
|                 |                 | 413942.8750                | 4044655.4609 |  |
|                 |                 | 413927.0000                | 4044663.3633 |  |
|                 |                 | 413903.6926                | 4044683.3942 |  |
|                 |                 | 413894.4560                | 4044691.3325 |  |
|                 |                 | 413851.0549                | 4044728.6326 |  |
|                 |                 | 413835.1875                | 4044742.2695 |  |
|                 |                 | 413737.0178                | 4044770.1565 |  |
|                 |                 | 413736.1250                | 4044770.4101 |  |
|                 |                 | 413718.5444                | 4044774.0088 |  |
|                 |                 | 413659.5625                | 4044786.0820 |  |
|                 |                 | 413580.1563                | 4044802.4375 |  |
|                 |                 | 413383.0000                | 4044830.8046 |  |
|                 |                 | 413320.1563                | 4044817.4180 |  |
|                 |                 | 413301.5625                | 4044812.2851 |  |
|                 |                 | 413262.4688                | 4044804.2656 |  |
|                 |                 | 413207.5312                | 4044792.0234 |  |
|                 |                 | 413172.6250                | 4044764.1484 |  |
|                 |                 | 413151.1250                | 4044737.0781 |  |
|                 |                 | 413142.0401                | 4044726.1974 |  |
|                 |                 | 413141.5000                | 4044725.5430 |  |
|                 |                 | 413000 0420                | 4044000.0703 |  |
|                 |                 | 412000.0420                | 4044070.3430 |  |
|                 |                 | 413043.8123<br>/12077 2012 | 4044030.0133 |  |
|                 |                 | 4123/7.2013                | 4044030.2344 |  |
|                 |                 | 4123/1.0/30                | 4044035.5125 |  |
|                 |                 | 412973.2013                | 4044077.3432 |  |
|                 |                 | 412900.1290                | 4044702.3730 |  |
| I               | 1               | 412332.33/3                | 4044/2/.222/ |  |

| Phase 9/10 Area |                 |             |              |  |
|-----------------|-----------------|-------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |
|                 |                 | 412938.6562 | 4044751.1016 |  |
|                 |                 | 412920.3125 | 4044773.7500 |  |
|                 |                 | 412905.0625 | 4044797.0703 |  |
|                 |                 | 412890.5938 | 4044820.3594 |  |
|                 |                 | 412872.4062 | 4044841.6563 |  |
|                 |                 | 412854.5938 | 4044865.6172 |  |
|                 |                 | 412835.3750 | 4044887.9297 |  |
|                 |                 | 412825.1563 | 4044907.0273 |  |
|                 |                 | 412814.8750 | 4044926.4844 |  |
|                 |                 | 412817.4375 | 4044949.8359 |  |
|                 |                 | 412821.0937 | 4044973.8476 |  |
|                 |                 | 412833.8750 | 4044984.1484 |  |
|                 |                 | 412849.5000 | 4044967.3906 |  |
|                 |                 | 412865.1250 | 4044948.5508 |  |
|                 |                 | 412881.3125 | 4044929.0977 |  |
|                 |                 | 412898.4375 | 4044907.7422 |  |
|                 |                 | 412916.5625 | 4044886.6485 |  |
|                 |                 | 412934.3125 | 4044865.6524 |  |
|                 |                 | 412949.7500 | 4044845.4648 |  |
|                 |                 | 412969.3750 | 4044830.5859 |  |
|                 |                 | 412990.7188 | 4044816.5156 |  |
|                 |                 | 413017.0625 | 4044806.8750 |  |
|                 |                 | 413040.4688 | 4044796.8320 |  |
|                 |                 | 413062.4375 | 4044789.0195 |  |
|                 |                 | 413085.0625 | 4044786.7696 |  |
|                 |                 | 413095.4635 | 4044802.3610 |  |
|                 |                 | 413097.2812 | 4044805.0859 |  |
|                 |                 | 413093.7092 | 4044816.2902 |  |
|                 |                 | 413090.2969 | 4044826.9934 |  |
|                 |                 | 413090.2500 | 4044827.1406 |  |
|                 |                 | 413088.7234 | 4044828.4651 |  |
|                 |                 | 413073.9063 | 4044841.3203 |  |
|                 |                 | 413058.5312 | 4044853.3359 |  |
|                 |                 | 413057.0049 | 4044856.3692 |  |
|                 |                 | 413054.8607 | 4044860.6302 |  |
|                 |                 | 413050.4507 | 4044869.3941 |  |
|                 |                 | 413049.8932 | 4044870.5020 |  |
|                 |                 | 413049.0313 | 4044872.2148 |  |
|                 |                 | 413049.0161 | 4044872.7291 |  |
|                 |                 | 413048.9673 | 4044874.3842 |  |
|                 |                 | 413048.4418 | 4044892.2065 |  |
|                 |                 | 413048.4062 | 4044893.4141 |  |
|                 |                 | 413048.7500 | 4044913.7695 |  |
|                 |                 | 413047.3185 | 4044918.3035 |  |
|                 |                 | 413044.7613 | 4044926.4027 |  |
|                 |                 | 413042.0000 | 4044935.1484 |  |
|                 |                 | 413039.8215 | 4044941.9659 |  |

| Phase 9/10 Area |                 |             |              |  |
|-----------------|-----------------|-------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |
|                 |                 | 413038.5737 | 4044945.8710 |  |
|                 |                 | 413036.7812 | 4044951.4805 |  |
|                 |                 | 413023.3447 | 4044959.5826 |  |
|                 |                 | 413022.9375 | 4044959.8281 |  |
|                 |                 | 413014.6212 | 4044969.9870 |  |
|                 |                 | 413011.1250 | 4044974.2578 |  |
|                 |                 | 413003.5000 | 4044987.2227 |  |
|                 |                 | 413010.9449 | 4044993.1086 |  |
|                 |                 | 413019.4688 | 4044999.8476 |  |
|                 |                 | 413034.9506 | 4045003.2954 |  |
|                 |                 | 413038.7812 | 4045004.1484 |  |
|                 |                 | 413053.3053 | 4045007.3910 |  |
|                 |                 | 413058.5000 | 4045008.5508 |  |
|                 |                 | 413073.2813 | 4045017.1016 |  |
|                 |                 | 413091.9375 | 4045015.5664 |  |
|                 |                 | 413111.7812 | 4045015.2734 |  |
|                 |                 | 413130.2813 | 4045011.9883 |  |
|                 |                 | 413148.3125 | 4045016.6758 |  |
|                 |                 | 413165.4375 | 4045023.4844 |  |
|                 |                 | 413168.2239 | 4045023.7454 |  |
|                 |                 | 413181.4217 | 4045024.9820 |  |
|                 |                 | 413182.9063 | 4045025.1211 |  |
|                 |                 | 413184.2136 | 4045025.0429 |  |
|                 |                 | 413189.0494 | 4045024.7537 |  |
|                 |                 | 413189.4029 | 4045024.7326 |  |
|                 |                 | 413202.4375 | 4045023.9531 |  |
|                 |                 | 413203.5915 | 4045025.6581 |  |
|                 |                 | 413209.3750 | 4045034.2032 |  |
|                 |                 | 413195.8125 | 4045035.4062 |  |
|                 |                 | 413177.8125 | 4045036.8008 |  |
|                 |                 | 413187.4688 | 4045042.9063 |  |
|                 |                 | 413206.1875 | 4045040.2695 |  |
|                 |                 | 413222.8125 | 4045043.4570 |  |
|                 |                 | 413241.0937 | 4045047.8281 |  |
|                 |                 | 413256.7500 | 4045051.7148 |  |
|                 |                 | 413276.3437 | 4045051.3555 |  |
|                 |                 | 413296.3437 | 4045052.1562 |  |
|                 |                 | 413310.8125 | 4045040.5937 |  |
|                 |                 | 413320.4010 | 4045033.1821 |  |
|                 |                 | 413326.6250 | 4045028.3711 |  |
|                 |                 | 413339.4375 | 4045017.6914 |  |
|                 |                 | 413359.2813 | 4045018.9414 |  |
|                 |                 | 413376.8750 | 4045025.6133 |  |
|                 |                 | 413391.3750 | 4045035.7891 |  |
|                 |                 | 413409.2187 | 4045037.5664 |  |
|                 |                 | 413400.5625 | 4045051.1055 |  |
|                 |                 | 413406.4371 | 4045060.5758 |  |

| Phase 9/10 Area |                 |             |              |  |
|-----------------|-----------------|-------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |
|                 |                 | 413408.1250 | 4045063.2968 |  |
|                 |                 | 413426.5312 | 4045064.4219 |  |
|                 |                 | 413443.5938 | 4045062.9375 |  |
|                 |                 | 413450.4040 | 4045062.7371 |  |
|                 |                 | 413463.3750 | 4045062.3555 |  |
|                 |                 | 413482.5938 | 4045067.3867 |  |
|                 |                 | 413487.4246 | 4045067.6792 |  |
|                 |                 | 413502.5938 | 4045068.5976 |  |
|                 |                 | 413513.5982 | 4045067.5155 |  |
|                 |                 | 413520.0313 | 4045066.8828 |  |
|                 |                 | 413520.9528 | 4045066.8472 |  |
|                 |                 | 413538.6935 | 4045066.1613 |  |
|                 |                 | 413540.8438 | 4045066.0782 |  |
|                 |                 | 413547.6784 | 4045067.8885 |  |
|                 |                 | 413561.3125 | 4045071.5000 |  |
|                 |                 | 413571.2790 | 4045068.4413 |  |
|                 |                 | 413580.1250 | 4045065.7265 |  |
|                 |                 | 413599.5312 | 4045065.5469 |  |
|                 |                 | 413619.9063 | 4045068.5742 |  |
|                 |                 | 413636.8438 | 4045078.2188 |  |
|                 |                 | 413656.3437 | 4045077.6133 |  |
|                 |                 | 413666.4113 | 4045075.3178 |  |
|                 |                 | 413671.1644 | 4045074.2341 |  |
|                 |                 | 413678.1875 | 4045072.6328 |  |
|                 |                 | 413686.7636 | 4045072.1193 |  |
|                 |                 | 413687.7673 | 4045072.0592 |  |
|                 |                 | 413701.2813 | 4045071.2500 |  |
|                 |                 | 413702.4004 | 4045071.8062 |  |
|                 |                 | 413714.0230 | 4045077.5833 |  |
|                 |                 | 413714.5312 | 4045077.8359 |  |
|                 |                 | 413727.3489 | 4045087.0569 |  |
|                 |                 | 413728.0625 | 4045087.5703 |  |
|                 |                 | 413731.0785 | 4045087.0728 |  |
|                 |                 | 413749.2813 | 4045084.0703 |  |
|                 |                 | 413770.8125 | 4045087.8281 |  |
|                 |                 | 413791.1875 | 4045086.2071 |  |
|                 |                 | 413810.5938 | 4045080.6719 |  |
|                 |                 | 413831.9687 | 4045078.7265 |  |
|                 |                 | 413834.2120 | 4045078.4635 |  |
|                 |                 | 413852.1875 | 4045076.3555 |  |
|                 |                 | 413853.1677 | 4045075.8880 |  |
|                 |                 | 413866.9063 | 4045069.3360 |  |
|                 |                 | 413869.6487 | 4045067.4577 |  |
|                 |                 | 413869.8125 | 4045067.4414 |  |
|                 |                 | 4138//.2/14 | 4045062.9992 |  |
|                 |                 | 413885.8205 | 4045058.1245 |  |
| 1               | 1               | 413887.6432 | 4045058.1620 |  |

| Phase 9/10 Area |                 |             |              |  |
|-----------------|-----------------|-------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |
|                 |                 | 413891.5833 | 4045058.2433 |  |
|                 |                 | 413903.6562 | 4045058.4922 |  |
|                 |                 | 413904.4613 | 4045058.2431 |  |
|                 |                 | 413907.0937 | 4045058.3711 |  |
|                 |                 | 413920.1245 | 4045054.0324 |  |
|                 |                 | 413927.9063 | 4045051.4414 |  |
|                 |                 | 413929.4440 | 4045050.6288 |  |
|                 |                 | 413936.9484 | 4045046.6632 |  |
|                 |                 | 413940.8584 | 4045045.0355 |  |
|                 |                 | 413941.1875 | 4045044.8984 |  |
|                 |                 | 413941.8640 | 4045044.0793 |  |
|                 |                 | 413941.8839 | 4045044.0552 |  |
|                 |                 | 413941.8961 | 4045044.0487 |  |
|                 |                 | 413947.6875 | 4045040.9883 |  |
|                 |                 | 413948.7066 | 4045037.5727 |  |
|                 |                 | 413949.5378 | 4045034.7866 |  |
|                 |                 | 413950.3390 | 4045033.8164 |  |
|                 |                 | 413952.5938 | 4045031.0860 |  |
|                 |                 | 413952.2068 | 4045025.8405 |  |
|                 |                 | 413952.9063 | 4045023.4961 |  |
|                 |                 | 413954.1304 | 4045006.9314 |  |
|                 |                 | 413956.3750 | 4044999.4219 |  |
|                 |                 | 413958.8706 | 4044987.8796 |  |
|                 |                 | 413963.9633 | 4044981.2161 |  |
|                 |                 | 413968.7500 | 4044974.9531 |  |
|                 |                 | 413977.2500 | 4044960.2656 |  |
|                 |                 | 413983.4375 | 4044947.5000 |  |
|                 |                 | 413986.1563 | 4044931.0312 |  |
|                 |                 | 413996.9063 | 4044916.7852 |  |
|                 |                 | 414016.1250 | 4044914.2656 |  |
|                 |                 | 414033.6875 | 4044906.6172 |  |
|                 |                 | 414052.8125 | 4044906.1289 |  |
|                 |                 | 414072.3750 | 4044908.3789 |  |
|                 |                 | 414083.4063 | 4044921.7031 |  |
|                 |                 | 414100.8750 | 4044927.2539 |  |
|                 |                 | 414120.6250 | 4044930.7031 |  |
|                 |                 | 414121.6109 | 4044930.8922 |  |
|                 |                 | 414122.0625 | 4044931.0156 |  |
|                 |                 | 414123.7604 | 4044931.3681 |  |
|                 |                 | 414128.9757 | 4044932.4506 |  |
|                 |                 | 414139.0000 | 4044934.5313 |  |
|                 |                 | 414155.0625 | 4044938.7969 |  |
|                 |                 | 414157.8468 | 4044939.0266 |  |
|                 |                 | 414161.4688 | 4044939.9805 |  |
|                 |                 | 414182.9834 | 4044943.1052 |  |
|                 |                 | 414183.2813 | 4044943.1484 |  |
|                 |                 | 414204.6490 | 4044940.7685 |  |

| Phase 9/10 Area |                 |             |              |  |
|-----------------|-----------------|-------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |
|                 |                 | 414205.9375 | 4044940.6250 |  |
|                 |                 | 414228.0625 | 4044939.2071 |  |
|                 |                 | 414249.1563 | 4044933.0117 |  |
|                 |                 | 414271.4375 | 4044935.2110 |  |
|                 |                 | 414280.2977 | 4044939.0012 |  |
|                 |                 | 414291.3437 | 4044943.7265 |  |
|                 |                 | 414308.3750 | 4044952.0938 |  |
|                 |                 | 414308.5634 | 4044952.1951 |  |
|                 |                 | 414314.1747 | 4044955.2120 |  |
|                 |                 | 414315.3593 | 4044956.8200 |  |
|                 |                 | 414316.1250 | 4044957.8594 |  |
|                 |                 | 414317.0840 | 4044958.0836 |  |
|                 |                 | 414321.3864 | 4044959.0895 |  |
|                 |                 | 414327.8750 | 4044962.5781 |  |
|                 |                 | 414332.8372 | 4044962.9602 |  |
|                 |                 | 414347.1241 | 4044964.0604 |  |
|                 |                 | 414352.7927 | 4044964.8795 |  |
|                 |                 | 414367.8125 | 4044967.8867 |  |
|                 |                 | 414383.5625 | 4044972.0625 |  |
|                 |                 | 414398.1250 | 4044977.2929 |  |
|                 |                 | 414413.6562 | 4044979.3125 |  |
|                 |                 | 414431.3437 | 4044976.8359 |  |
|                 |                 | 414437.7882 | 4044976.1305 |  |
|                 |                 | 414452.7188 | 4044974.4961 |  |
|                 |                 | 414467.1704 | 4044972.9714 |  |
|                 |                 | 414471.7500 | 4044972.4883 |  |
|                 |                 | 414481.0722 | 4044971.0124 |  |
|                 |                 | 414483.3437 | 4044971.2929 |  |
|                 |                 | 414496.4688 | 4044971.6797 |  |
|                 |                 | 414504.4274 | 4044973.0845 |  |
|                 |                 | 414505.2500 | 4044981.2695 |  |
|                 |                 | 414505.3966 | 4044981.7496 |  |
|                 |                 | 414508.0625 | 4044990.4844 |  |
|                 |                 | 414511.0552 | 4044990.9591 |  |
|                 |                 | 414515.2146 | 4044991.6189 |  |
|                 |                 | 414515.5649 | 4044991.6744 |  |
|                 |                 | 414519.3125 | 4044988.5000 |  |
|                 |                 | 414525.8438 | 4044981.5000 |  |
|                 |                 | 414530.6563 | 4044974.2500 |  |
|                 |                 | 414535.5137 | 4044972.3411 |  |
|                 |                 | 414539.9062 | 4044965.6055 |  |
|                 |                 | 414544.5787 | 4044966.5259 |  |
|                 |                 | 414550.2500 | 4044961.7500 |  |
|                 |                 | 414556.3750 | 4044959.7500 |  |
|                 |                 | 414565.5625 | 4044958.2500 |  |
|                 |                 | 414569.1490 | 4044959.5662 |  |
| 1               | 1               | 414570.6134 | 4044949.3240 |  |

|         | Phase 9         | /10 Area    |              |
|---------|-----------------|-------------|--------------|
| Area ID | Area (sq miles) | UTM X       | UTM Y        |
|         |                 | 414571.1250 | 4044945.7461 |
|         |                 | 414587.0778 | 4044947.7554 |
|         |                 | 414587.4688 | 4044947.8047 |
|         |                 | 414592.8251 | 4044946.7488 |
|         |                 | 414606.7500 | 4044944.0039 |
|         |                 | 414612.6035 | 4044944.8317 |
|         |                 | 414615.9375 | 4044937.5000 |
|         |                 | 414625.2142 | 4044940.9941 |
|         |                 | 414632.5313 | 4044943.7500 |
|         |                 | 414639.4063 | 4044940.0000 |
|         |                 | 414647.6875 | 4044937.2500 |
|         |                 | 414654.0938 | 4044930.5000 |
|         |                 | 414666.7813 | 4044918.7500 |
|         |                 | 414677.2813 | 4044913.7500 |
|         |                 | 414680.1250 | 4044913.2500 |
|         |                 | 414685.1563 | 4044912.0000 |
|         |                 | 414695.9375 | 4044899.2500 |
|         |                 | 414699.7188 | 4044891.0000 |
|         |                 | 414702.5000 | 4044889.0000 |
|         |                 | 414703.6892 | 4044886.4129 |
|         |                 | 414706.0625 | 4044881.2500 |
|         |                 | 414709.1206 | 4044880.1380 |
|         |                 | 414709.5000 | 4044880.0000 |
|         |                 | 414710.1025 | 4044879.0036 |
|         |                 | 414716.0000 | 4044869.2500 |
|         |                 | 414720.0000 | 4044864.0000 |
|         |                 | 414724.7137 | 4044862.1231 |
|         |                 | 414726.9063 | 4044861.2500 |
|         |                 | 414731.1250 | 4044861.2500 |
|         |                 | 414734.8125 | 4044856.0000 |
|         |                 | 414733.7188 | 4044854.7500 |
|         |                 | 414734.1250 | 4044851.2500 |
|         |                 | 414738.1563 | 4044849.5000 |
|         |                 | 414743.5000 | 4044845.2500 |
|         |                 | 414748.4167 | 4044845.2500 |
|         |                 | 414756.6563 | 4044845.2500 |
|         |                 | 414759.3438 | 4044844.2500 |
|         |                 | 414766.3438 | 4044841.5000 |
|         |                 | 414777.0000 | 4044833.2500 |
|         |                 | 414786.6875 | 4044822.7500 |
|         |                 | 414800.3750 | 4044819.2500 |
|         |                 | 414802.0000 | 4044818.5000 |
|         |                 | 414802.2813 | 4044818.5000 |
|         |                 | 414820.9063 | 4044816.0000 |
|         |                 | 414845./813 | 4044812.2500 |
|         |                 | 414846.5938 | 4044812.2500 |
| 1       |                 | 414868.0313 | 4044808.0000 |

|         | Phase 9         | /10 Area    |              |
|---------|-----------------|-------------|--------------|
| Area ID | Area (sq miles) | UTM X       | UTM Y        |
|         |                 | 414890.7500 | 4044802.2500 |
|         |                 | 414912.7188 | 4044797.0000 |
|         |                 | 414915.5758 | 4044796.7473 |
|         |                 | 414932.5000 | 4044795.2500 |
|         |                 | 414935.6250 | 4044795.0000 |
|         |                 | 414955.0938 | 4044789.7500 |
|         |                 | 414958.0938 | 4044788.2500 |
|         |                 | 414976.4688 | 4044783.2500 |
|         |                 | 414997.1875 | 4044778.5000 |
|         |                 | 415001.1563 | 4044777.7500 |
|         |                 | 415002.6147 | 4044777.6331 |
|         |                 | 415019.8750 | 4044776.2500 |
|         |                 | 415024.0313 | 4044777.2500 |
|         |                 | 415030.0000 | 4044771.7500 |
|         |                 | 415045.5938 | 4044768.7500 |
|         |                 | 415056.1250 | 4044765.7500 |
|         |                 | 415071.0000 | 4044763.5000 |
|         |                 | 415082.5625 | 4044763.5000 |
|         |                 | 415104.3183 | 4044760.1139 |
|         |                 | 415108.9766 | 4044753.6674 |
|         |                 | 415112.7812 | 4044748.4023 |
|         |                 | 415125.7500 | 4044744.2695 |
|         |                 | 415132.8050 | 4044742.7189 |
|         |                 | 415146.4375 | 4044739.7226 |
|         |                 | 415158.6875 | 4044736.7617 |
|         |                 | 415163.8375 | 4044735.9730 |
|         |                 | 415166.9601 | 4044735.4948 |
|         |                 | 415178.2500 | 4044733.7656 |
|         |                 | 415181.9335 | 4044731.4456 |
|         |                 | 415194.2814 | 4044723.6680 |
|         |                 | 415196.7188 | 4044722.1328 |
|         |                 | 415207.7422 | 4044718.2725 |
|         |                 | 415217.1875 | 4044714.9649 |
|         |                 | 415229.7510 | 4044709.3659 |
|         |                 | 415238.0313 | 4044705.6758 |
|         |                 | 415252.8589 | 4044702.2998 |
|         |                 | 415257.5520 | 4044701.2312 |
|         |                 | 415258.5638 | 4044701.0008 |
|         |                 | 415260.4375 | 4044700.5742 |
|         |                 | 415277.5679 | 4044694.8447 |
|         |                 | 415282.3125 | 4044693.2578 |
|         |                 | 415293.9813 | 4044691.2320 |
|         |                 | 415304.8125 | 4044689.3516 |
|         |                 | 415325.8025 | 4044679.4597 |
|         |                 | 415326.5625 | 4044679.1016 |
|         |                 | 415342.7265 | 4044678.3045 |
|         |                 | 415348.0313 | 4044678.0430 |

|         | Phase 9         | /10 Area    |              |
|---------|-----------------|-------------|--------------|
| Area ID | Area (sq miles) | UTM X       | UTM Y        |
|         |                 | 415351.4548 | 4044677.0900 |
|         |                 | 415351.7725 | 4044677.0016 |
|         |                 | 415355.2108 | 4044676.0446 |
|         |                 | 415359.1007 | 4044674.9619 |
|         |                 | 415362.1877 | 4044674.1025 |
|         |                 | 415368.8438 | 4044672.2500 |
|         |                 | 415382.8099 | 4044669.7347 |
|         |                 | 415389.9687 | 4044668.4453 |
|         |                 | 415412.5312 | 4044662.2500 |
|         |                 | 415435.1250 | 4044655.8320 |
|         |                 | 415456.6562 | 4044649.4531 |
|         |                 | 415472.6192 | 4044643.2642 |
|         |                 | 415477.2500 | 4044641.4687 |
|         |                 | 415485.8804 | 4044638.7771 |
|         |                 | 415495.3832 | 4044635.8134 |
|         |                 | 415496.1250 | 4044635.5820 |
|         |                 | 415515.2813 | 4044627.1211 |
|         |                 | 415518.3608 | 4044626.1182 |
|         |                 | 415532.6250 | 4044621.4727 |
|         |                 | 415550.8750 | 4044616.3125 |
|         |                 | 415560.1900 | 4044612.8868 |
|         |                 | 415565.8057 | 4044610.8215 |
|         |                 | 415565.9310 | 4044610.7754 |
|         |                 | 415569.7812 | 4044609.3594 |
|         |                 | 415586.5938 | 4044598.0860 |
|         |                 | 415606.3437 | 4044590.3555 |
|         |                 | 415624.4375 | 4044581.3203 |
|         |                 | 415639.3963 | 4044574.7532 |
|         |                 | 415643.8438 | 4044572.8008 |
|         |                 | 415652.7329 | 4044568.6985 |
|         |                 | 415663.3302 | 4044563.8079 |
|         |                 | 415663.6250 | 4044563.6719 |
|         |                 | 415682.7812 | 4044554.1055 |
|         |                 | 415700.7500 | 4044543.3359 |
|         |                 | 415705.8118 | 4044540.3258 |
|         |                 | 415709.1792 | 4044538.3233 |
|         |                 | 415710.3502 | 4044537.6269 |
|         |                 | 415717.6250 | 4044533.3008 |
|         |                 | 415727.8060 | 4044529.5410 |
|         |                 | 415729.6922 | 4044528.8444 |
|         |                 | 415730.0099 | 4044528.7271 |
|         |                 | 415734.0625 | 4044527.2305 |
|         |                 | 415736.1696 | 4044525.8331 |
|         |                 | 415750.5312 | 4044516.3086 |
|         |                 | 415758.3804 | 4044509.3832 |
|         |                 | 415765.5000 | 4044503.1016 |
|         |                 | 415772.5636 | 4044500.0209 |

| Phase 9/10 Area |                 |             |              |
|-----------------|-----------------|-------------|--------------|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |
|                 |                 | 415779.9360 | 4044496.8055 |
|                 |                 | 415781.2813 | 4044496.2188 |
|                 |                 | 415774.6562 | 4044483.5625 |
|                 |                 | 415771.9687 | 4044465.8047 |
|                 |                 | 415772.4688 | 4044451.0468 |
|                 |                 | 415762.4063 | 4044438.1016 |
|                 |                 | 415753.9445 | 4044431.7449 |
|                 |                 | 415749.6562 | 4044428.5234 |
|                 |                 | 415749.1821 | 4044424.3311 |
|                 |                 | 415747.8750 | 4044412.7734 |
|                 |                 | 415741.7812 | 4044396.8164 |
|                 |                 | 415739.0625 | 4044380.0859 |
|                 |                 | 415739.0625 | 4044363.0468 |
|                 |                 | 415744.1811 | 4044350.0971 |
|                 |                 | 415745.7188 | 4044346.2070 |
|                 |                 | 415748.2138 | 4044340.7077 |
|                 |                 | 415753.3645 | 4044329.3551 |
|                 |                 | 415753.3750 | 4044329.3320 |
|                 |                 | 415759.9687 | 4044312.6288 |
|                 |                 | 415754.6250 | 4044296.0859 |
|                 |                 | 415753.8167 | 4044291.2794 |
|                 |                 | 415753.7812 | 4044290.6523 |
|                 |                 | 415753.8125 | 4044289.9140 |
|                 |                 | 415752.6875 | 4044281.3125 |
|                 |                 | 415751.9199 | 4044279.9999 |
|                 |                 | 415751.6250 | 4044278.2461 |
|                 |                 | 415749.7831 | 4044273.5301 |
|                 |                 | 415746.4112 | 4044264.8966 |
|                 |                 | 415749.5000 | 4044258.1250 |
|                 |                 | 415754.8437 | 4044257.8086 |
|                 |                 | 415759.2813 | 4044253.5586 |
|                 |                 | 415764.4688 | 4044247.0585 |
|                 |                 | 415767.4062 | 4044242.7500 |
|                 |                 | 415770.9687 | 4044235.2890 |
|                 |                 | 415772.7500 | 4044230.8242 |
|                 |                 | 415773.3750 | 4044227.5508 |
|                 |                 | 415774.8125 | 4044218.9766 |
|                 |                 | 415767.4688 | 4044213.5469 |
|                 |                 | 415766.3437 | 4044212.2929 |
|                 |                 | 415766.3125 | 4044211.2578 |
|                 |                 | 415763.9375 | 4044206.2969 |
|                 |                 | 415759.4688 | 4044200.3632 |
|                 |                 | 415760.2813 | 4044197.7578 |
|                 |                 | 415759.4375 | 4044194.6797 |
|                 |                 | 415758.5625 | 4044191.7226 |
|                 |                 | 415757.4062 | 4044189.6132 |
|                 |                 | 415755.1563 | 4044183.4570 |

|         | Phase 9,        | /10 Area    |              |
|---------|-----------------|-------------|--------------|
| Area ID | Area (sq miles) | UTM X       | UTM Y        |
|         |                 | 415758.0937 | 4044181.3320 |
|         |                 | 415760.9062 | 4044179.3125 |
|         |                 | 415764.6250 | 4044175.0507 |
|         |                 | 415765.2500 | 4044174.3086 |
|         |                 | 415765.7188 | 4044173.0351 |
|         |                 | 415768.3437 | 4044168.6797 |
|         |                 | 415774.4688 | 4044161.6523 |
|         |                 | 415774.9062 | 4044161.1406 |
|         |                 | 415775.1563 | 4044160.9453 |
|         |                 | 415777.1875 | 4044158.3828 |
|         |                 | 415778.1875 | 4044157.0820 |
|         |                 | 415778.5625 | 4044156.6797 |
|         |                 | 415780.3240 | 4044152.1065 |
|         |                 | 415785.9687 | 4044142.9218 |
|         |                 | 415790.9244 | 4044136.1914 |
|         |                 | 415793.4062 | 4044135.2695 |
|         |                 | 415794.0937 | 4044134.2578 |
|         |                 | 415798.7812 | 4044127.0624 |
|         |                 | 415799.1202 | 4044125.8062 |
|         |                 | 415802.3125 | 4044121.9218 |
|         |                 | 415806.8125 | 4044111.0429 |
|         |                 | 415808.1994 | 4044107.8612 |
|         |                 | 415808.8125 | 4044107.1992 |
|         |                 | 415814.4375 | 4044102.9492 |
|         |                 | 415819.8125 | 4044096.1875 |
|         |                 | 415822.2500 | 4044091.7382 |
|         |                 | 415826.2187 | 4044086.9609 |
|         |                 | 415829.4375 | 4044082.6953 |
|         |                 | 415833.0625 | 4044080.5273 |
|         |                 | 415836.3125 | 4044080.1445 |
|         |                 | 415836.6875 | 4044071.4219 |
|         |                 | 415832.9687 | 4044063.7851 |
|         |                 | 415832.2538 | 4044057.9896 |
|         |                 | 415832.8468 | 4044056.9279 |
|         |                 | 415833.4398 | 4044055.8663 |
|         |                 | 415838.6562 | 4044050.4492 |
|         |                 | 415845.7858 | 4044041.9496 |
|         |                 | 415846.5312 | 4044041.2812 |
|         |                 | 415856.8750 | 4044031.8867 |
|         |                 | 415867.1875 | 4044020.2969 |
|         |                 | 415868.8457 | 4044018.4143 |
|         |                 | 4158/8.5312 | 4044007.4180 |
|         |                 | 415887.6562 | 4043995.8750 |
|         |                 | 415899.9062 | 4043987.3554 |
|         |                 | 415914.4375 | 4043982.9609 |
|         |                 | 415929.2187 | 4043981.8359 |
| 1       | 1               | 415943.3750 | 4043976.2773 |

| Phase 9/10 Area |                 |             |              |  |
|-----------------|-----------------|-------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |
|                 |                 | 415955.1563 | 4043965.1992 |  |
|                 |                 | 415967.7500 | 4043957.8984 |  |
|                 |                 | 415982.4375 | 4043951.4492 |  |
|                 |                 | 415996.0937 | 4043950.2734 |  |
|                 |                 | 416012.3125 | 4043949.3242 |  |
|                 |                 | 416027.4688 | 4043949.1250 |  |
|                 |                 | 416033.2351 | 4043950.0655 |  |
|                 |                 | 416041.7188 | 4043951.4492 |  |
|                 |                 | 416052.2593 | 4043953.9567 |  |
|                 |                 | 416058.9062 | 4043962.6054 |  |
|                 |                 | 416064.3119 | 4043953.4465 |  |
|                 |                 | 416065.9216 | 4043953.2681 |  |
|                 |                 | 416067.5312 | 4043953.0898 |  |
|                 |                 | 416079.9687 | 4043946.5976 |  |
|                 |                 | 416094.4688 | 4043948.2070 |  |
|                 |                 | 416107.2187 | 4043954.9883 |  |
|                 |                 | 416119.7188 | 4043961.9531 |  |
|                 |                 | 416121.4151 | 4043963.0681 |  |
|                 |                 | 416130.5938 | 4043969.1015 |  |
|                 |                 | 416138.3125 | 4043978.5077 |  |
|                 |                 | 416150.2000 | 4043982.1564 |  |
|                 |                 | 416153.6875 | 4043986.7617 |  |
|                 |                 | 416160.5207 | 4043987.9831 |  |
|                 |                 | 416160.9128 | 4043988.2668 |  |
|                 |                 | 416161.3425 | 4043988.5777 |  |
|                 |                 | 416166.6875 | 4044004.1250 |  |
|                 |                 | 416171.2813 | 4044022.1445 |  |
|                 |                 | 416185.9687 | 4044025.4219 |  |
|                 |                 | 416202.2187 | 4044020.3593 |  |
|                 |                 | 416216.5312 | 4044025.2890 |  |
|                 |                 | 416229.1702 | 4044030.0451 |  |
|                 |                 | 416233.5736 | 4044033.1394 |  |
|                 |                 | 416237.2359 | 4044035.7128 |  |
|                 |                 | 416240.0119 | 4044038.0385 |  |
|                 |                 | 416245.2813 | 4044042.4531 |  |
|                 |                 | 416245.9177 | 4044042.2086 |  |
|                 |                 | 416246.5540 | 4044041.9642 |  |
|                 |                 | 416247.3125 | 4044043.0703 |  |
|                 |                 | 416249.4687 | 4044041.4648 |  |
|                 |                 | 416253.0625 | 4044043.1367 |  |
|                 |                 | 416254.5517 | 4044038.8919 |  |
|                 |                 | 416259.3750 | 4044037.0390 |  |
|                 |                 | 416259.8310 | 4044036.1638 |  |
|                 |                 | 416260.8211 | 4044034.2637 |  |
|                 |                 | 416261.6470 | 4044034.9506 |  |
|                 |                 | 416262.4062 | 4044035.5820 |  |
| 1               |                 | 416266.2500 | 4044030.9492 |  |

| Phase 9/10 Area |                 |             |              |  |
|-----------------|-----------------|-------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |
|                 |                 | 416267.8488 | 4044027.1585 |  |
|                 |                 | 416269.1250 | 4044024.1328 |  |
|                 |                 | 416268.6562 | 4044021.6894 |  |
|                 |                 | 416267.8953 | 4044017.7229 |  |
|                 |                 | 416267.9011 | 4044017.6287 |  |
|                 |                 | 416267.9069 | 4044017.5346 |  |
|                 |                 | 416270.2434 | 4044011.4929 |  |
|                 |                 | 416270.4854 | 4044010.8671 |  |
|                 |                 | 416271.0625 | 4044009.3749 |  |
|                 |                 | 416274.6154 | 4044002.6324 |  |
|                 |                 | 416276.3679 | 4043999.3064 |  |
|                 |                 | 416276.7188 | 4043998.6406 |  |
|                 |                 | 416278.0625 | 4043996.5077 |  |
|                 |                 | 416279.4062 | 4043994.3749 |  |
|                 |                 | 416281.2406 | 4043991.9859 |  |
|                 |                 | 416283.0625 | 4043989.6132 |  |
|                 |                 | 416283.2500 | 4043989.1269 |  |
|                 |                 | 416283.4375 | 4043988.6406 |  |
|                 |                 | 416285.8750 | 4043981.4804 |  |
|                 |                 | 416284.9835 | 4043980.2698 |  |
|                 |                 | 416284.0919 | 4043979.0591 |  |
|                 |                 | 416286.1563 | 4043975.5586 |  |
|                 |                 | 416286.9509 | 4043974.2400 |  |
|                 |                 | 416287.0400 | 4043974.0922 |  |
|                 |                 | 416287.0472 | 4043974.0802 |  |
|                 |                 | 416287.9237 | 4043972.6259 |  |
|                 |                 | 416288.0637 | 4043972.4208 |  |
|                 |                 | 416293.1250 | 4043965.0078 |  |
|                 |                 | 416294.2835 | 4043962.0731 |  |
|                 |                 | 416294.4688 | 4043961.7656 |  |
|                 |                 | 416294.5466 | 4043961.4066 |  |
|                 |                 | 416295.5947 | 4043958.7515 |  |
|                 |                 | 416298.5312 | 4043951.3125 |  |
|                 |                 | 416297.6223 | 4043947.2118 |  |
|                 |                 | 416297.9987 | 4043945.4750 |  |
|                 |                 | 416298.3750 | 4043943.7382 |  |
|                 |                 | 416303.8750 | 4043928.9062 |  |
|                 |                 | 416311.9687 | 4043913.1914 |  |
|                 |                 | 416317.7812 | 4043897.9531 |  |
|                 |                 | 416318.3953 | 4043895.6550 |  |
|                 |                 | 416319.0094 | 4043893.3568 |  |
|                 |                 | 416323.1875 | 4043890.9140 |  |
|                 |                 | 416335.5000 | 40438/8.1/5/ |  |
|                 |                 | 416345./188 | 4043864.6132 |  |
|                 |                 | 410357.5312 | 4043851.8945 |  |
|                 |                 | 416358.1184 | 4043851.3074 |  |
| 1               | I               | 416361.7502 | 4043847.6756 |  |

| _       | Phase 9         | )/10 Area   |              |
|---------|-----------------|-------------|--------------|
| Area ID | Area (sq miles) | UTM X       | UTM Y        |
|         |                 | 416362.9573 | 4043846.4684 |
|         |                 | 416369.6562 | 4043839.7695 |
|         |                 | 416383.0625 | 4043831.6797 |
|         |                 | 416390.8399 | 4043824.8053 |
|         |                 | 416393.6579 | 4043824.5288 |
|         |                 | 416394.4688 | 4043824.4492 |
|         |                 | 416397.6562 | 4043822.3554 |
|         |                 | 416402.3750 | 4043816.9844 |
|         |                 | 416407.3054 | 4043809.1908 |
|         |                 | 416407.8437 | 4043808.3398 |
|         |                 | 416408.2282 | 4043808.1439 |
|         |                 | 416416.0625 | 4043804.1523 |
|         |                 | 416421.7500 | 4043799.7187 |
|         |                 | 416431.0937 | 4043795.0976 |
|         |                 | 416436.9375 | 4043787.8476 |
|         |                 | 416436.9531 | 4043786.0019 |
|         |                 | 416436.9687 | 4043784.1562 |
|         |                 | 416439.7500 | 4043779.6601 |
|         |                 | 416441.2970 | 4043777.9694 |
|         |                 | 416441.6888 | 4043777.5412 |
|         |                 | 416441.8750 | 4043777.5429 |
|         |                 | 416444.5678 | 4043773.5112 |
|         |                 | 416450.2813 | 4043764.9570 |
|         |                 | 416456.9687 | 4043750.6953 |
|         |                 | 416461.3750 | 4043733.4297 |
|         |                 | 416459.9375 | 4043715.6523 |
|         |                 | 416459.5340 | 4043704.7745 |
|         |                 | 416459.7500 | 4043703.5547 |
|         |                 | 416459.4699 | 4043703.0478 |
|         |                 | 416459.2500 | 4043697.1211 |
|         |                 | 416460.1813 | 4043689.1233 |
|         |                 | 416460.9687 | 4043687.3632 |
|         |                 | 416467.8750 | 4043682.9453 |
|         |                 | 416473.0313 | 4043678.2656 |
|         |                 | 416477.6875 | 4043673.6171 |
|         |                 | 416478.3750 | 4043669.4609 |
|         |                 | 416478.6061 | 4043669.2486 |
|         |                 | 416484.7500 | 4043663.6054 |
|         |                 | 416484.1875 | 4043654.9648 |
|         |                 | 416484.0000 | 4043652.0937 |
|         |                 | 416488.3125 | 4043646.5586 |
|         |                 | 416493.2500 | 4043640.6953 |
|         |                 | 416496.8437 | 4043635.4180 |
|         |                 | 416502.0313 | 4043625.4921 |
|         |                 | 416505.1563 | 4043618.3086 |
|         |                 | 416509.0313 | 4043611.7148 |
| 1       |                 | 416513.1875 | 4043604.9961 |

| Phase 9/10 Area |                 |             |              |  |
|-----------------|-----------------|-------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |
|                 |                 | 416516.7812 | 4043596.5937 |  |
|                 |                 | 416519.5625 | 4043585.7968 |  |
|                 |                 | 416516.8750 | 4043577.6328 |  |
|                 |                 | 416515.2500 | 4043575.7929 |  |
|                 |                 | 416514.2835 | 4043573.6851 |  |
|                 |                 | 416512.0662 | 4043568.8494 |  |
|                 |                 | 416511.7784 | 4043567.2830 |  |
|                 |                 | 416516.9910 | 4043565.5015 |  |
|                 |                 | 416517.7500 | 4043565.2421 |  |
|                 |                 | 416525.5312 | 4043559.2617 |  |
|                 |                 | 416526.9341 | 4043551.1581 |  |
|                 |                 | 416527.7500 | 4043546.4453 |  |
|                 |                 | 416527.9688 | 4043544.3415 |  |
|                 |                 | 416528.1875 | 4043542.2382 |  |
|                 |                 | 416527.1580 | 4043534.8354 |  |
|                 |                 | 416527.1250 | 4043534.5976 |  |
|                 |                 | 416526.5156 | 4043531.8808 |  |
|                 |                 | 416526.0945 | 4043530.0036 |  |
|                 |                 | 416525.9062 | 4043529.1640 |  |
|                 |                 | 416526.4832 | 4043524.9591 |  |
|                 |                 | 416526.8125 | 4043522.5586 |  |
|                 |                 | 416528.7782 | 4043517.3200 |  |
|                 |                 | 416530.0313 | 4043513.9805 |  |
|                 |                 | 416530.4062 | 4043510.2617 |  |
|                 |                 | 416530.3526 | 4043509.8563 |  |
|                 |                 | 416529.6250 | 4043504.3593 |  |
|                 |                 | 416529.6250 | 4043502.3828 |  |
|                 |                 | 416530.5938 | 4043495.9140 |  |
|                 |                 | 416534.0937 | 4043484.0859 |  |
|                 |                 | 416534.1449 | 4043483.4661 |  |
|                 |                 | 416534.9597 | 4043481.3282 |  |
|                 |                 | 416535.0625 | 4043481.0585 |  |
|                 |                 | 416535.2049 | 4043480.8010 |  |
|                 |                 | 416541.8898 | 4043468.7127 |  |
|                 |                 | 416548.2295 | 4043467.3879 |  |
|                 |                 | 416549.5625 | 4043467.1093 |  |
|                 |                 | 416552.7500 | 4043468.0937 |  |
|                 |                 | 416559.0937 | 4043468.9531 |  |
|                 |                 | 416563.1875 | 4043467.7422 |  |
|                 |                 | 416563.5938 | 4043467.5508 |  |
|                 |                 | 416568.8599 | 4043464.7798 |  |
|                 |                 | 416570.1563 | 4043464.0976 |  |
|                 |                 | 416570.5806 | 4043461.7927 |  |
|                 |                 | 416571.1875 | 4043458.4960 |  |
|                 |                 | 416571.3125 | 4043451.7265 |  |
|                 |                 | 416571.3381 | 4043450.1999 |  |
|                 |                 | 416573.1875 | 4043432.4219 |  |

|         | Phase 9,        | /10 Area    |              |
|---------|-----------------|-------------|--------------|
| Area ID | Area (sq miles) | UTM X       | UTM Y        |
|         |                 | 416581.3437 | 4043415.6484 |
|         |                 | 416589.6875 | 4043398.3515 |
|         |                 | 416597.6562 | 4043380.3203 |
|         |                 | 416598.2094 | 4043377.6772 |
|         |                 | 416602.3750 | 4043371.0546 |
|         |                 | 416601.2385 | 4043368.7970 |
|         |                 | 416600.4118 | 4043367.1548 |
|         |                 | 416601.3125 | 4043362.8516 |
|         |                 | 416599.3723 | 4043348.6223 |
|         |                 | 416600.7188 | 4043346.9609 |
|         |                 | 416602.9375 | 4043344.1601 |
|         |                 | 416607.8750 | 4043340.5742 |
|         |                 | 416611.0313 | 4043334.5742 |
|         |                 | 416611.7500 | 4043331.5898 |
|         |                 | 416612.1563 | 4043323.8906 |
|         |                 | 416613.0000 | 4043319.6171 |
|         |                 | 416613.0625 | 4043316.7265 |
|         |                 | 416612.9062 | 4043313.2304 |
|         |                 | 416612.7356 | 4043311.7313 |
|         |                 | 416620.6562 | 4043302.0937 |
|         |                 | 416632.3125 | 4043288.9883 |
|         |                 | 416636.2819 | 4043282.3737 |
|         |                 | 416640.3898 | 4043275.5284 |
|         |                 | 416641.4688 | 4043273.7304 |
|         |                 | 416640.8556 | 4043269.3181 |
|         |                 | 416639.0000 | 4043255.9648 |
|         |                 | 416636.5883 | 4043254.5016 |
|         |                 | 416625.3125 | 4043247.6601 |
|         |                 | 416627.5938 | 4043236.2109 |
|         |                 | 416635.5387 | 4043231.7528 |
|         |                 | 416641.8438 | 4043228.2148 |
|         |                 | 416648.7812 | 4043213.6641 |
|         |                 | 416658.2813 | 4043203.3242 |
|         |                 | 416670.3750 | 4043192.5391 |
|         |                 | 416680.9687 | 4043180.7070 |
|         |                 | 416685.5664 | 4043181.0048 |
|         |                 | 416696.0449 | 4043181.6835 |
|         |                 | 416697.3125 | 4043181.7656 |
|         |                 | 416710.0313 | 4043171.0156 |
|         |                 | 416722.8750 | 4043161.2969 |
|         |                 | 416740.0625 | 4043160.2773 |
|         |                 | 416756.6562 | 4043153.0976 |
|         |                 | 416772.5312 | 4043144.1093 |
|         |                 | 416787.4688 | 4043133.5508 |
|         |                 | 416798.2813 | 4043119.0390 |
|         |                 | 416804.5000 | 4043102.9804 |
|         |                 | 416817.6875 | 4043095.1211 |

| Phase 9/10 Area |                 |             |              |  |
|-----------------|-----------------|-------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |
|                 |                 | 416830.1195 | 4043088.9051 |  |
|                 |                 | 416830.1379 | 4043088.9252 |  |
|                 |                 | 416830.1563 | 4043088.9452 |  |
|                 |                 | 416832.5872 | 4043088.5580 |  |
|                 |                 | 416836.6491 | 4043087.9110 |  |
|                 |                 | 416839.5540 | 4043088.1106 |  |
|                 |                 | 416847.1563 | 4043088.6328 |  |
|                 |                 | 416849.5905 | 4043086.8986 |  |
|                 |                 | 416858.2813 | 4043080.7070 |  |
|                 |                 | 416867.7570 | 4043081.5548 |  |
|                 |                 | 416873.3437 | 4043082.0546 |  |
|                 |                 | 416890.4063 | 4043081.1172 |  |
|                 |                 | 416907.6562 | 4043081.3671 |  |
|                 |                 | 416923.4375 | 4043075.1718 |  |
|                 |                 | 416927.1865 | 4043069.7354 |  |
|                 |                 | 416931.5938 | 4043071.9180 |  |
|                 |                 | 416931.6875 | 4043071.9609 |  |
|                 |                 | 416932.9688 | 4043071.8711 |  |
|                 |                 | 416937.9688 | 4043071.5234 |  |
|                 |                 | 416953.5313 | 4043070.4336 |  |
|                 |                 | 416956.7188 | 4043069.2227 |  |
|                 |                 | 416971.1204 | 4043063.7614 |  |
|                 |                 | 416971.5625 | 4043063.5937 |  |
|                 |                 | 416977.5324 | 4043065.1101 |  |
|                 |                 | 416978.0000 | 4043065.2421 |  |
|                 |                 | 416984.0313 | 4043067.9609 |  |
|                 |                 | 416990.9062 | 4043069.2148 |  |
|                 |                 | 416998.0000 | 4043067.8281 |  |
|                 |                 | 416999.7188 | 4043068.7343 |  |
|                 |                 | 417001.1248 | 4043069.4627 |  |
|                 |                 | 417003.4063 | 4043070.6446 |  |
|                 |                 | 417008.8125 | 4043072.5039 |  |
|                 |                 | 417009.6562 | 4043072.3008 |  |
|                 |                 | 417012.7812 | 4043070.2344 |  |
|                 |                 | 417130.3805 | 4042995.6745 |  |
| T35-2-L1        | 0.05            | 411224.0888 | 4041830.6824 |  |
|                 |                 | 411095.4672 | 4041732.0116 |  |
|                 |                 | 411089.3727 | 4041727.3363 |  |
|                 |                 | 411081.5448 | 4041721.3312 |  |
|                 |                 | 411054.7057 | 4041700.7419 |  |
|                 |                 | 410996.6969 | 4041656.2410 |  |
|                 |                 | 410968.0051 | 4041634.2304 |  |
|                 |                 | 410938.6899 | 4041611.7416 |  |
|                 |                 | 410908.7982 | 4041588.8105 |  |
|                 |                 | 410891.2200 | 4041575.3256 |  |
|                 |                 | 410882.7812 | 4041570.8945 |  |
| l               | 1               | 410874.3719 | 4041562.4007 |  |

| Phase 9/10 Area |                 |             |              |
|-----------------|-----------------|-------------|--------------|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |
|                 |                 | 410865.2368 | 4041555.3928 |
|                 |                 | 410860.8313 | 4041552.0132 |
|                 |                 | 410857.4942 | 4041549.4532 |
|                 |                 | 410843.9976 | 4041595.2088 |
|                 |                 | 410840.2849 | 4041607.7952 |
|                 |                 | 410776.8400 | 4041822.8824 |
|                 |                 | 410768.3331 | 4041851.7219 |
|                 |                 | 410783.3125 | 4041852.0898 |
|                 |                 | 410802.3437 | 4041854.1445 |
|                 |                 | 410822.8438 | 4041852.0273 |
|                 |                 | 410841.4375 | 4041851.6093 |
|                 |                 | 410853.1563 | 4041864.0781 |
|                 |                 | 410860.5000 | 4041879.9140 |
|                 |                 | 410874.8438 | 4041890.4882 |
|                 |                 | 410884.7812 | 4041906.0624 |
|                 |                 | 410889.1250 | 4041924.3749 |
|                 |                 | 410892.7188 | 4041944.9413 |
|                 |                 | 410893.6250 | 4041966.4297 |
|                 |                 | 410890.9375 | 4041986.3593 |
|                 |                 | 410895.1563 | 4042005.6210 |
|                 |                 | 410911.0625 | 4042016.1718 |
|                 |                 | 410951.5526 | 4042020.9825 |
|                 |                 | 410994.7500 | 4042021.4062 |
|                 |                 | 411034.1563 | 4042020.8555 |
|                 |                 | 411048.2187 | 4042015.8046 |
|                 |                 | 411089.0911 | 4042005.7764 |
|                 |                 | 411114.5444 | 4041993.0498 |
|                 |                 | 411150.1875 | 4041979.1406 |
|                 |                 | 411184.2060 | 4041970.2758 |
|                 |                 | 411204.3007 | 4041943.4829 |
|                 |                 | 411215.0179 | 4041889.8970 |
|                 |                 | 411224.0888 | 4041830.6824 |
| T37-1-L1        | 0.18            | 409238.0474 | 4043261.4907 |
|                 |                 | 409230.6355 | 4043256.7461 |
|                 |                 | 409208.7762 | 4043242.7534 |
|                 |                 | 409208.7508 | 4043242.7132 |
|                 |                 | 409200.9353 | 4043230.3216 |
|                 |                 | 409194.5618 | 4043220.2162 |
|                 |                 | 409169.6449 | 4043203.0818 |
|                 |                 | 409169.4921 | 4043202.9767 |
|                 |                 | 409169.1853 | 4043202.5072 |
|                 |                 | 409158.1803 | 4043185.6676 |
|                 |                 | 409157.5060 | 4043184.6357 |
|                 |                 | 409156.9721 | 4043183.8188 |
|                 |                 | 409146.6404 | 4043168.0094 |
|                 |                 | 409131.4936 | 4043157.2058 |
|                 |                 | 409125.0977 | 4043152.6440 |

| Area ID | Area (sq miles) | UTM X       | UTM Y        |
|---------|-----------------|-------------|--------------|
|         |                 | 409123.5351 | 4043151.5294 |
|         |                 | 409119.9071 | 4043148.9417 |
|         |                 | 409103.0041 | 4043136.8856 |
|         |                 | 409092.7411 | 4043129.5655 |
|         |                 | 409083.5694 | 4043121.1072 |
|         |                 | 409081.3001 | 4043119.0144 |
|         |                 | 409064.8988 | 4043103.8887 |
|         |                 | 409064.2670 | 4043103.3061 |
|         |                 | 409060.9224 | 4043100.2216 |
|         |                 | 409057 0231 | 4043096 6256 |
|         |                 | 409049 1885 | 4043089 4003 |
|         |                 | 409041 4086 | 4043082 2255 |
|         |                 | 409035 9237 | 4043077 1673 |
|         |                 | 409029 4133 | 4043071 1632 |
|         |                 | 409029.4155 | 4043071.1032 |
|         |                 | 409029.3449 | 4043071.1002 |
|         |                 | 409021.0449 | 4043004.1833 |
|         |                 | 409021.0004 | 4043003.4047 |
|         |                 | 409011.5501 | 4045054.5105 |
|         |                 | 409006.4654 | 4043040.0130 |
|         |                 | 408994.5055 | 4043008.9037 |
|         |                 | 408993.9067 | 4043008.5228 |
|         |                 | 408976.9965 | 4042992.2671 |
|         |                 | 408971.6735 | 4042987.1501 |
|         |                 | 408959.3314 | 4042975.2857 |
|         |                 | 408953.7132 | 4042967.7595 |
|         |                 | 408946.5357 | 4042958.1444 |
|         |                 | 408940.4946 | 4042950.0516 |
|         |                 | 408937.7558 | 4042946.3827 |
|         |                 | 408937.4330 | 4042945.9503 |
|         |                 | 408936.0468 | 4042944.0932 |
|         |                 | 408932.7352 | 4042939.6570 |
|         |                 | 408932.4594 | 4042939.2875 |
|         |                 | 408929.5742 | 4042935.4224 |
|         |                 | 408921.8623 | 4042925.0916 |
|         |                 | 408918.1633 | 4042920.1363 |
|         |                 | 408913.3184 | 4042913.6459 |
|         |                 | 408910.5689 | 4042909.9627 |
|         |                 | 408907.6413 | 4042907.2807 |
|         |                 | 408900.2233 | 4042900.4852 |
|         |                 | 408894.7102 | 4042895.4348 |
|         |                 | 408890.4177 | 4042891.5024 |
|         |                 | 408867.9296 | 4042870.9015 |
|         |                 | 408863.5110 | 4042866.8537 |
|         |                 | 408863.1337 | 4042866.5080 |
|         |                 | 408859.4392 | 4042863.1236 |
|         |                 | 408856.0866 | 4042860.0523 |
|         |                 | 408856.6178 | 4042855.0319 |

| Exhibit 1 - PM10 Contro | l Areas and | Coordinates |
|-------------------------|-------------|-------------|
|-------------------------|-------------|-------------|

| Area ID | Area (so miles) | UTM X       | UTM Y        |
|---------|-----------------|-------------|--------------|
| 7466415 |                 | 408856.8687 | 4042852.6613 |
|         |                 | 408857.4396 | 4042847.2662 |
|         |                 | 408858,8893 | 4042833.5669 |
|         |                 | 408863.2774 | 4042792.0999 |
|         |                 | 408859 2582 | 4042782 1007 |
|         |                 | 408858 9146 | 4042781 2460 |
|         |                 | 408857 0293 | 4042776 5556 |
|         |                 | 408851 2068 | 4042762 0701 |
|         |                 | 408844 1085 | 4042744 4106 |
|         |                 | 400044.1005 | 4042739 6846 |
|         |                 | 408825 1265 | 4042730.0040 |
|         |                 | 408023.1203 | 4042720.2450 |
|         |                 | 408802 5265 | 4042717.5152 |
|         |                 | 408803.3203 | 4042700.3849 |
|         |                 | 408792.4081 | 4042099.3891 |
|         |                 | 400703.3407 | 4042090.7791 |
|         |                 | 408700.3233 | 4042089.2729 |
|         |                 | 400730.3303 | 4042080.1190 |
|         |                 | 408748.7200 | 4042082.5275 |
|         |                 | 408743.3474 | 4042080.3303 |
|         |                 | 408715.0005 | 4042075.5751 |
|         |                 | 408707.2204 | 4042074.2502 |
|         |                 | 400090.0000 | 4042072.5500 |
|         |                 | 408088.0273 | 4042073.7951 |
|         |                 | 408674.8361 | 4042676.2663 |
|         |                 | 408665.3417 | 4042677.9675 |
|         |                 | 408658.4561 | 4042677.3701 |
|         |                 | 408652.7502 | 4042676.8751 |
|         |                 | 408651.6705 | 4042676.7814 |
|         |                 | 408629.8639 | 4042674.8894 |
|         |                 | 408619.1549 | 4042670.8313 |
|         |                 | 408611.9856 | 4042668.1144 |
|         |                 | 408604.3349 | 4042665.2152 |
|         |                 | 408590.3377 | 4042659.9109 |
|         |                 | 408578.9758 | 4042655.6054 |
|         |                 | 408576.1325 | 4042654.5279 |
|         |                 | 408574.9830 | 4042654.0923 |
|         |                 | 408574.7923 | 4042653.9712 |
|         |                 | 408571.7999 | 4042652.0698 |
|         |                 | 408570.3453 | 4042651.1456 |
|         |                 | 408569.7790 | 4042650.7858 |
|         |                 | 408569.7642 | 4042650.7764 |
|         |                 | 408568.1933 | 4042649.7782 |
|         |                 | 408566.5111 | 4042648.7094 |
|         |                 | 408563.7246 | 4042646.9389 |
|         |                 | 408548.7787 | 4042637.4425 |
|         |                 | 408543.1695 | 4042633.8785 |
|         |                 | 408543.1086 | 4042633.8398 |

| Phase 9/10 Area |                 |             |              |  |
|-----------------|-----------------|-------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |
|                 |                 | 408538.3709 | 4042630.8295 |  |
|                 |                 | 408533.4289 | 4042627.6895 |  |
|                 |                 | 408531.5370 | 4042626.4874 |  |
|                 |                 | 408527.1862 | 4042623.7230 |  |
|                 |                 | 408526.3493 | 4042623.1913 |  |
|                 |                 | 408526.1185 | 4042623.0446 |  |
|                 |                 | 408525.9797 | 4042622.8245 |  |
|                 |                 | 408520.5008 | 4042614.1347 |  |
|                 |                 | 408511.8895 | 4042600.4769 |  |
|                 |                 | 408506.2941 | 4042594.0294 |  |
|                 |                 | 408505.8846 | 4042593.5576 |  |
|                 |                 | 408500.6445 | 4042587.5196 |  |
|                 |                 | 408486.5695 | 4042571.3015 |  |
|                 |                 | 408482.5335 | 4042566.6510 |  |
|                 |                 | 408479.8641 | 4042563.5751 |  |
|                 |                 | 408477.8694 | 4042561.2767 |  |
|                 |                 | 408471.3153 | 4042553.7246 |  |
|                 |                 | 408466.8823 | 4042548.6166 |  |
|                 |                 | 408462.6057 | 4042543.6889 |  |
|                 |                 | 408455.9718 | 4042536.0449 |  |
|                 |                 | 408445.2616 | 4042523.7039 |  |
|                 |                 | 408441.1621 | 4042518.9802 |  |
|                 |                 | 408428.3087 | 4042504.1697 |  |
|                 |                 | 408405.7674 | 4042488.7920 |  |
|                 |                 | 408389.6508 | 4042484.1169 |  |
|                 |                 | 408361.9306 | 4042476.0760 |  |
|                 |                 | 408358.9028 | 4042474.2377 |  |
|                 |                 | 408358.4712 | 4042473.9756 |  |
|                 |                 | 408352.9831 | 4042470.6436 |  |
|                 |                 | 408352.7133 | 4042470.4798 |  |
|                 |                 | 408343.1912 | 4042464.6985 |  |
|                 |                 | 408343.1042 | 4042464.6831 |  |
|                 |                 | 408339.4204 | 4042464.0330 |  |
|                 |                 | 408316.6806 | 4042460.0196 |  |
|                 |                 | 408316.5011 | 4042459.9880 |  |
|                 |                 | 408316.4851 | 4042459.9851 |  |
|                 |                 | 408316.4774 | 4042459.9838 |  |
|                 |                 | 408316.4646 | 4042459.9920 |  |
|                 |                 | 408315.3660 | 4042460.7000 |  |
|                 |                 | 408294.6521 | 4042474.0488 |  |
|                 |                 | 408267.7178 | 4042491.4062 |  |
|                 |                 | 408267.6767 | 4042491.4087 |  |
|                 |                 | 408226.3741 | 4042493.8791 |  |
|                 |                 | 408219.8713 | 4042494.2681 |  |
|                 |                 | 408201.5916 | 4042495.3615 |  |
|                 |                 | 408184.9242 | 4042496.3584 |  |
|                 |                 | 408184.0589 | 4042496.4101 |  |

| Area ID | Area (sq miles) | UTM X       | UTM Y        |
|---------|-----------------|-------------|--------------|
|         |                 | 408162.3272 | 4042497.7099 |
|         |                 | 408095.0368 | 4042501.7350 |
|         |                 | 408090.7813 | 4042501.9891 |
|         |                 | 408089.5625 | 4042502.0622 |
|         |                 | 408089.5374 | 4042502.0637 |
|         |                 | 408089.5014 | 4042502.0659 |
|         |                 | 408088.7554 | 4042503.9647 |
|         |                 | 408086.5383 | 4042509.6074 |
|         |                 | 408080.2995 | 4042525.4862 |
|         |                 | 408078,1553 | 4042530.9437 |
|         |                 | 408077 5517 | 4042532 4798 |
|         |                 | 408073 8791 | 4042541 8273 |
|         |                 | 408067 3807 | 4042541.0275 |
|         |                 | 408053 9609 | 4042593.5000 |
|         |                 | 408035.5005 | 4042552.5224 |
|         |                 | 408040.7323 | 4042010.8091 |
|         |                 | 408037.2143 | 4042055.1454 |
|         |                 | 408032.2792 | 4042647.7062 |
|         |                 | 408032.2070 | 4042647.7067 |
|         |                 | 408022.4716 | 4042648.1008 |
|         |                 | 408021.5853 | 4042648.1365 |
|         |                 | 407985.9326 | 4042649.5710 |
|         |                 | 407980.4094 | 4042649.7933 |
|         |                 | 407979.3355 | 4042649.8365 |
|         |                 | 407978.4997 | 4042649.8701 |
|         |                 | 407978.0503 | 4042649.8882 |
|         |                 | 407947.3069 | 4042651.1252 |
|         |                 | 407936.4269 | 4042651.5630 |
|         |                 | 407893.8312 | 4042653.2768 |
|         |                 | 407873.2855 | 4042654.1035 |
|         |                 | 407870.3125 | 4042665.4414 |
|         |                 | 407896.3438 | 4042683.5195 |
|         |                 | 407922.8750 | 4042703.9179 |
|         |                 | 407947.9375 | 4042726.9179 |
|         |                 | 407973.3750 | 4042750.1133 |
|         |                 | 407996.6250 | 4042770.2265 |
|         |                 | 408018.2813 | 4042789.8633 |
|         |                 | 408040.1250 | 4042807.8789 |
|         |                 | 408062.2813 | 4042821.8437 |
|         |                 | 408085.0937 | 4042835.7617 |
|         |                 | 408089.1563 | 4042842.0820 |
|         |                 | 408092.5311 | 4042843.5702 |
|         |                 | 408095.9063 | 4042845.0585 |
|         |                 | 408103.6562 | 4042849.9570 |
|         |                 | 408117.4375 | 4042862.0039 |
|         |                 | 408133 1563 | 4042873 4141 |
|         |                 | 408149 8125 | 4042886 3672 |
|         |                 | 108166 7812 | 1012807 6228 |
| 1       | I               | 400100.7012 | 4042037.0320 |

#### Phase 9/10 Area Area ID Area (sq miles) UTM X UTM Y 408181.5312 4042909.5586 408195.5938 4042922.3984 408206.4375 4042938.3320 408219.5312 4042950.7265 408235.3750 4042961.1796 408250.8750 4042973.5586 408267.7812 4042982.0312 408276.0313 4042994.5039 408276.8750 4043008.7578 408278.2144 4043009.7267 408278.6608 4043010.0496 408279.5536 4043010.6956 408292.5938 4043020.1289 408306.8437 4043030.0742 408322.1563 4043041.5703 408337.2500 4043053.9766 4043065.2695 408351.0937 408362.8750 4043075.1875 408375.4062 4043087.2187 408390.5625 4043091.8672 408405.5625 4043100.9140 408421.1875 4043110.6328 408437.1875 4043119.8359 408453.5625 4043131.0468 408462.4688 4043148.3672 408476.1875 4043150.3554 408492.7812 4043154.0195 408489.3750 4043168.8437 408476.0937 4043180.2461 408463.7188 4043185.2500 408474.0000 4043196.3672 408489.4062 4043203.4531 408504.3125 4043212.4921 408520.1250 4043220.2617 408536.8125 4043224.8633 408550.2813 4043227.7812 408560.2813 4043230.2539 408570.9687 4043224.7148 408581.0937 4043216.5391 408595.1875 4043212.7890 408611.6250 4043219.1211 4043226.4062 408627.1875 408643.4062 4043232.2500 408657.7187 4043240.6680 408659.5468 4043242.1263

#### Exhibit 1 - PM10 Control Areas and Coordinates

408661.3750

408702.3750

4043243.5849

4043268.4531

| Phase 9/10 Area |                 |             |              |
|-----------------|-----------------|-------------|--------------|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |
|                 |                 | 408719.0313 | 4043275.4804 |
|                 |                 | 408734.3352 | 4043280.9297 |
|                 |                 | 408745.7188 | 4043272.6289 |
|                 |                 | 408765.5289 | 4043234.0403 |
|                 |                 | 408758.0392 | 4043201.0853 |
|                 |                 | 408755.1533 | 4043197.3114 |
|                 |                 | 408738.5658 | 4043175.6201 |
|                 |                 | 408686.1375 | 4043144.1631 |
|                 |                 | 408685.5828 | 4043140.5577 |
|                 |                 | 408681.3431 | 4043112.9996 |
|                 |                 | 408680.1457 | 4043105.2164 |
|                 |                 | 408681.7293 | 4043101.1695 |
|                 |                 | 408693.6272 | 4043070.7635 |
|                 |                 | 408723.9473 | 4043060.0623 |
|                 |                 | 408744.5576 | 4043052.7881 |
|                 |                 | 408832.9367 | 4043031.8168 |
|                 |                 | 408833.2603 | 4043031.8977 |
|                 |                 | 408856.9040 | 4043037.8086 |
|                 |                 | 408870.1068 | 4043056.0894 |
|                 |                 | 408876.3773 | 4043064.7717 |
|                 |                 | 408890.1591 | 4043080.7191 |
|                 |                 | 408981.2340 | 4043186.1058 |
|                 |                 | 409002.8003 | 4043195.7418 |
|                 |                 | 409051.6377 | 4043217.5628 |
|                 |                 | 409068.8239 | 4043219.3770 |
|                 |                 | 409116.9343 | 4043224.4555 |
|                 |                 | 409118.4002 | 4043224.6103 |
|                 |                 | 409154.2975 | 4043228.3996 |
|                 |                 | 409156.7550 | 4043228.6590 |
|                 |                 | 409157.8562 | 4043228.7753 |
|                 |                 | 409157.8603 | 4043228.7757 |
|                 |                 | 409159.6323 | 4043228.9628 |
|                 |                 | 409170.1563 | 4043228.0156 |
|                 |                 | 409181.7104 | 4043227.3755 |
|                 |                 | 409189.9687 | 4043241.4180 |
|                 |                 | 409210.7188 | 4043251.7539 |
|                 |                 | 409232.2187 | 4043261.0195 |
|                 |                 | 409238.0474 | 4043261.4907 |
| T37-2-L1        | 0.18            | 409286.9516 | 4038201.2212 |
|                 |                 | 409266.6143 | 4038238.0301 |
|                 |                 | 409254.9333 | 4038259.1717 |
|                 |                 | 409254.9382 | 4038259.1787 |
|                 |                 | 409254.9598 | 4038259.2095 |
|                 |                 | 409264.9373 | 4038273.3966 |
|                 |                 | 409304.7186 | 4038329.9623 |
|                 |                 | 409304.7158 | 4038329.9955 |
|                 |                 | 409304.3603 | 4038333.9409 |

#### Area ID Area (sq miles) UTM X UTM Y 409300.1250 4038380.9426 409299.1846 4038391.3782 409299.1327 4038391.4158 409276.8305 4038407.5517 409267.1731 4038414.5390 409267.1551 4038414.5416 409201.6494 4038423.9892 409201.2496 4038424.0469 409201.1026 4038424.0681 409201.0785 4038424.0504 409194.4843 4038419.2111 409188.6648 4038414.9404 409166.2029 4038398.4562 409144.5362 4038382.5555 409134.0177 4038309.6731 4038289.8759 409130.9580 409129.0855 4038277.7607 409126.1477 4038258.7530 409124.1495 4038258.6052 409068.1858 4038254.4649 409028.9283 4038251.5605 408969.2399 4038248.8355 408915.2794 4038246.3720 408911.3347 4038246.1919 408908.9055 4038248.0314 408888.3205 4038263.6190 408883.0703 4038267.5946 408856.6550 4038287.5971 408853.1404 4038290.2585 408796.6756 4038298.6942 408762.6862 4038303.7721

Phase 9/10 Area

#### Exhibit 1 - PM10 Control Areas and Coordinates

408853.6562

408871.8125

408887.5312

408889.4379

408896.8438

408898.5012

408901.8750

408918.5000

408935.3125

408948.0625

408957.6562

408976.3125

408992.6250 409009.2187

409028.4062

409046.1875

4038362.2188

4038370.6446

4038382.1250

4038383.7596

4038391.3789

4038391.5296

4038394.4219

4038406.1367

4038417.6641

4038431.7461

4038446.8125 4038455.0391

4038467.4883

4038479.3594

4038485.9649

4038482.4141

| Area ID | Area (sg miles) | UTM X       | UTM Y        |
|---------|-----------------|-------------|--------------|
|         |                 | 409063.9687 | 4038478.6485 |
|         |                 | 409078.1875 | 4038468.6875 |
|         |                 | 409086.8125 | 4038456.3594 |
|         |                 | 409099.4688 | 4038449.0000 |
|         |                 | 409113.4062 | 4038450.3555 |
|         |                 | 409125.5312 | 4038455.2071 |
|         |                 | 409135.4688 | 4038464.4844 |
|         |                 | 409142.7812 | 4038475.7461 |
|         |                 | 409147.8750 | 4038489.3945 |
|         |                 | 409153 4375 | 4038504 4727 |
|         |                 | 409159 0625 | 4038520 6563 |
|         |                 | 409159 4696 | 4038523 6720 |
|         |                 | 409159.4688 | 4038523.8726 |
|         |                 | 409160 0389 | 4038546 9275 |
|         |                 | 409100.0505 | 4038553 9/17 |
|         |                 | 409157.6875 | 4038570 2617 |
|         |                 | 400153 4688 | 4038584 7578 |
|         |                 | 409155.4088 | 4038584.7578 |
|         |                 | 409130.4373 | 4038000.3409 |
|         |                 | 409144.4373 | 4038013.7070 |
|         |                 | 409130.0937 | 4038029.3347 |
|         |                 | 409134.3933 | 4038031.0334 |
|         |                 | 409134.3313 | 4030031.0234 |
|         |                 | 409134.2729 | 4030031.3702 |
|         |                 | 409124.7188 |              |
|         |                 | 409119.3080 | 4038051.1019 |
|         |                 | 409117.6152 | 4038662.4947 |
|         |                 | 409117.1771 | 4038683.5275 |
|         |                 | 409111.4807 | 4038705.4367 |
|         |                 | 409109.0694 | 4038/11.55/5 |
|         |                 | 409108.3125 | 4038712.5391 |
|         |                 | 409108.6051 | 4038/12./361 |
|         |                 | 409109.6129 | 4038713.4146 |
|         |                 | 409106.9687 | 4038/18.4/2/ |
|         |                 | 409117.7188 | 4038729.5274 |
|         |                 | 409123.3125 | 4038745.1094 |
|         |                 | 409122.0625 | 4038760.8750 |
|         |                 | 409116.4062 | 4038776.2227 |
|         |                 | 409110.5938 | 4038/91.9180 |
|         |                 | 409106.9687 | 4038808.4570 |
|         |                 | 409101.8125 | 4038825.7383 |
|         |                 | 409089.7305 | 4038837.6123 |
|         |                 | 409006.3051 | 4038926.0054 |
|         |                 | 408972.6702 | 4038988.9814 |
|         |                 | 408959.7888 | 4039112.0709 |
|         |                 | 408951.9168 | 4039210.8287 |
|         |                 | 408958.5938 | 4039291.7383 |
|         |                 | 408959.4063 | 4039303.7854 |

| Area ID | Area (sg miles)                       | UTM X       | UTM Y        |
|---------|---------------------------------------|-------------|--------------|
| -       | · · · · · · · · · · · · · · · · · · · | 408959.1250 | 4039309.5586 |
|         |                                       | 408959.0857 | 4039312.3876 |
|         |                                       | 408958.9688 | 4039313.1211 |
|         |                                       | 408955.3750 | 4039329.7852 |
|         |                                       | 408967.5113 | 4039340.2998 |
|         |                                       | 408977.8706 | 4039344.4704 |
|         |                                       | 408988.0000 | 4039348.1523 |
|         |                                       | 408997.3259 | 4039348.7398 |
|         |                                       | 409003.7729 | 4039349.1459 |
|         |                                       | 409005.9585 | 4039349.2836 |
|         |                                       | 409019.8673 | 4039337.2715 |
|         |                                       | 409041.3628 | 4039313.2471 |
|         |                                       | 409074.2382 | 4039296.8094 |
|         |                                       | 409109.6425 | 4039281.6361 |
|         |                                       | 409157.0590 | 4039282.9006 |
|         |                                       | 409181.7155 | 4039273.4173 |
|         |                                       | 409217.1198 | 4039244.9674 |
|         |                                       | 409240.5119 | 4039210.8276 |
|         |                                       | 409262.0074 | 4039145.7089 |
|         |                                       | 409267.0652 | 4039102.7180 |
|         |                                       | 409277.1354 | 4039075.6544 |
|         |                                       | 409281.3701 | 4039066.7893 |
|         |                                       | 409291.7217 | 4039045.1860 |
|         |                                       | 409310.0561 | 4039014.2073 |
|         |                                       | 409304.0686 | 4038996.2869 |
|         |                                       | 409298.0313 | 4038972.5625 |
|         |                                       | 409299.0937 | 4038963.9414 |
|         |                                       | 409296.4486 | 4038947.1801 |
|         |                                       | 409308.3019 | 4038932.7868 |
|         |                                       | 409335.4124 | 4038931.3884 |
|         |                                       | 409336.8125 | 4038932.1367 |
|         |                                       | 409347.0313 | 4038930.7891 |
|         |                                       | 409398.0488 | 4038923.4734 |
|         |                                       | 409464.9356 | 4038920.0867 |
|         |                                       | 409531.8224 | 4038927.7068 |
|         |                                       | 409608.8692 | 4038926.8601 |
|         |                                       | 409679.9893 | 4038920.9334 |
|         |                                       | 409737.5628 | 4038900.6134 |
|         |                                       | 409767.1962 | 4038870.1333 |
|         |                                       | 409800.2162 | 4038834.5732 |
|         |                                       | 409816.3029 | 4038771.9198 |
|         |                                       | 409806.9896 | 4038754.9864 |
|         |                                       | 409771.4295 | 4038706.7263 |
|         |                                       | 409734.1761 | 4038665.2396 |
|         |                                       | 409675.7560 | 4038616.9795 |
|         |                                       | 409575.8491 | 4038550.0927 |
|         |                                       | 409531.8224 | 4038517.9193 |

| Exhibit 1 - PM10 Control | Areas and | Coordinates |
|--------------------------|-----------|-------------|
|--------------------------|-----------|-------------|

| Area ID  | Area (sq miles) | UTM X       | UTM Y        |
|----------|-----------------|-------------|--------------|
|          |                 | 409465.7822 | 4038432.4058 |
|          |                 | 409416.5659 | 4038358.2027 |
|          |                 | 409407.0313 | 4038350.7226 |
|          |                 | 409401.9375 | 4038346.3164 |
|          |                 | 409398.5312 | 4038343.5430 |
|          |                 | 409393 9687 | 4038338 2617 |
|          |                 | 409388 7500 | 4038333 7969 |
|          |                 | 409380.7500 | 4038329 5039 |
|          |                 | 405381.7500 | 4038325.3033 |
|          |                 | 409373.8730 | 4038525.5711 |
|          |                 | 409370.0025 | 4038324.4003 |
|          |                 | 409368.1250 | 4038323.7031 |
|          |                 | 409364.9375 | 4038323.3633 |
|          |                 | 409363.8437 | 4038323.1211 |
|          |                 | 409358.1250 | 4038321.8867 |
|          |                 | 409351.4375 | 4038321.9844 |
|          |                 | 409342.6562 | 4038321.9922 |
|          |                 | 409341.4062 | 4038321.7031 |
|          |                 | 409339.0625 | 4038320.0703 |
|          |                 | 409337.3750 | 4038318.4024 |
|          |                 | 409334.3750 | 4038314.7930 |
|          |                 | 409331.5625 | 4038312.0743 |
|          |                 | 409330.8437 | 4038311.4141 |
|          |                 | 409329.8125 | 4038310.5508 |
|          |                 | 409323.1875 | 4038306.6015 |
|          |                 | 409318.5000 | 4038301.6836 |
|          |                 | 409318.0937 | 4038298.4687 |
|          |                 | 409316.6562 | 4038296.4492 |
|          |                 | 409313.5938 | 4038291.4883 |
|          |                 | 409309 4688 | 4038285 2617 |
|          |                 | 409306 1563 | 4038282 4727 |
|          |                 | 409300.1903 | 4038276 9180 |
|          |                 | 400000.4002 | 4038278.3188 |
|          |                 | 409298.2187 | 4038273.2188 |
|          |                 | 409294.6457 | 4030200.7570 |
|          |                 | 409295.0675 | 4038201.0004 |
|          |                 | 409290.9687 | 4038253.3594 |
|          |                 | 409288.6250 | 4038248.0743 |
|          |                 | 409287.8125 | 4038242.8320 |
|          |                 | 409288.7812 | 4038232.8984 |
|          |                 | 409286.2187 | 4038223.9180 |
|          |                 | 409286.1250 | 4038217.5976 |
|          |                 | 409286.9516 | 4038201.2212 |
| T37-2-L2 | 0.06            | 408869.9095 | 4037236.6162 |
|          |                 | 408910.3790 | 4037241.3160 |
|          |                 | 408947.8902 | 4037245.6722 |
|          |                 | 408950.7405 | 4037246.0033 |
|          |                 | 409044.0149 | 4037256.8354 |
|          |                 | 409105.2039 | 4037365.9140 |

| Exhibit 1 - PM10 Contro | I Areas and Coordinates |
|-------------------------|-------------------------|
|-------------------------|-------------------------|

| Area ID | Area (sq miles) | UTM X       | UTM Y        |
|---------|-----------------|-------------|--------------|
|         |                 | 409184.9769 | 4037508.1215 |
|         |                 | 409260.6274 | 4037628.4629 |
|         |                 | 409334.4056 | 4037792.2852 |
|         |                 | 409334.9149 | 4037882.5867 |
|         |                 | 409335.6730 | 4038017.0063 |
|         |                 | 409335.6731 | 4038017.0272 |
|         |                 | 409325.1482 | 4038037.5861 |
|         |                 | 409312.7645 | 4038061.7760 |
|         |                 | 409312.4915 | 4038067.6499 |
|         |                 | 409311.1102 | 4038097.3658 |
|         |                 | 409310.1022 | 4038119.0518 |
|         |                 | 409308.0610 | 4038162.9628 |
|         |                 | 409308.0602 | 4038162.9814 |
|         |                 | 409308.0584 | 4038163.0196 |
|         |                 | 409307.8777 | 4038166.1114 |
|         |                 | 409347.6416 | 4038144.3188 |
|         |                 | 409375.6250 | 4038127.1055 |
|         |                 | 409383.2500 | 4038121.4687 |
|         |                 | 409387.9687 | 4038119.0391 |
|         |                 | 409393.1250 | 4038115.2773 |
|         |                 | 409396.2187 | 4038114.1601 |
|         |                 | 409406.5155 | 4038103.8984 |
|         |                 | 409446.3089 | 4038029.3916 |
|         |                 | 409441.2289 | 4037985.3649 |
|         |                 | 409441.2289 | 4037954.8848 |
|         |                 | 409467.4756 | 4037903.2380 |
|         |                 | 409477.6356 | 4037837.1979 |
|         |                 | 409460.7022 | 4037805.8712 |
|         |                 | 409453.0822 | 4037784.7045 |
|         |                 | 409458.1622 | 4037752.5311 |
|         |                 | 409455.6222 | 4037719.5110 |
|         |                 | 409451.3889 | 4037705.9643 |
|         |                 | 409457.3156 | 4037684.7976 |
|         |                 | 409456.4689 | 4037654.3175 |
|         |                 | 409448.0022 | 4037625.5308 |
|         |                 | 409439.5355 | 4037584.8907 |
|         |                 | 409420.0621 | 4037550.1773 |
|         |                 | 409405.6688 | 4037525.6240 |
|         |                 | 409405.6688 | 4037517.0038 |
|         |                 | 409405.6688 | 4037504.6109 |
|         |                 | 409405.6688 | 4037473.9772 |
|         |                 | 409395.5088 | 4037419.7904 |
|         |                 | 409386.1954 | 4037359.6770 |
|         |                 | 409359.9487 | 4037335.1236 |
|         |                 | 409340.4753 | 4037324.1169 |
|         |                 | 409332.8553 | 4037299.5635 |
|         |                 | 409322.8937 | 4037270.2646 |

| Phase 9/10 Area |                 |             |              |
|-----------------|-----------------|-------------|--------------|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |
|                 |                 | 409318.4619 | 4037257.2300 |
|                 |                 | 409269.3552 | 4037252.1500 |
|                 |                 | 409239.7218 | 4037236.0633 |
|                 |                 | 409220.2484 | 4037215.7433 |
|                 |                 | 409191.4617 | 4037210.6633 |
|                 |                 | 409167.7550 | 4037210.6633 |
|                 |                 | 409157.2756 | 4037211.5764 |
|                 |                 | 408869.9095 | 4037236.6162 |
| T37-2-L3        | 0.05            | 408702.8334 | 4036371.4813 |
|                 |                 | 408706.6520 | 4036616.2502 |
|                 |                 | 408751.3271 | 4036667.7207 |
|                 |                 | 408789.6756 | 4036817.3542 |
|                 |                 | 408787.0526 | 4036961.8229 |
|                 |                 | 408785.6817 | 4037037.3381 |
|                 |                 | 408785.6375 | 4037039.7694 |
|                 |                 | 408794.4375 | 4037037.9062 |
|                 |                 | 408806.1875 | 4037026.1640 |
|                 |                 | 408822.2500 | 4037020.7461 |
|                 |                 | 408835.3125 | 4037020.0195 |
|                 |                 | 408840.4062 | 4037016.9688 |
|                 |                 | 408918.0313 | 4036927.3555 |
|                 |                 | 408927.0000 | 4036920.4453 |
|                 |                 | 408935.6562 | 4036909.0938 |
|                 |                 | 408945.7500 | 4036898.8125 |
|                 |                 | 408955.1250 | 4036887.5235 |
|                 |                 | 408961.2500 | 4036872.5196 |
|                 |                 | 408967.0625 | 4036859.3594 |
|                 |                 | 409002.5938 | 4036740.4531 |
|                 |                 | 408992.6562 | 4036629.7070 |
|                 |                 | 408958.3750 | 4036561.8867 |
|                 |                 | 408944.7500 | 4036525.4102 |
|                 |                 | 408915.6562 | 4036465.5898 |
|                 |                 | 408903.9639 | 4036451.2250 |
|                 |                 | 408863.1007 | 4036401.0218 |
|                 |                 | 408798.7641 | 4036379.9278 |
|                 |                 | 408768.6901 | 4036377.2799 |
|                 |                 | 408723.8003 | 4036373.3274 |
|                 |                 | 408702.8334 | 4036371.4813 |
| T37-2-L4        | 0.19            | 408376.9612 | 4036159.8220 |
|                 |                 | 408386.2217 | 4036113.3207 |
|                 |                 | 408415.8015 | 4035964.7875 |
|                 |                 | 408417.2066 | 4035957.7318 |
|                 |                 | 408465.9883 | 4035936.4920 |
|                 |                 | 408694.4951 | 4035836.9988 |
|                 |                 | 408700.2588 | 4036206.4511 |
|                 |                 | 408700.7345 | 4036236.9420 |
|                 |                 | 408700.7355 | 4036237.0064 |
| I               | I               |             |              |
| Phase 9/10 Area |                 |             |              |  |  |
|-----------------|-----------------|-------------|--------------|--|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |  |
|                 |                 | 408708.2813 | 4036241.5586 |  |  |
|                 |                 | 408724.0625 | 4036246.0469 |  |  |
|                 |                 | 408749.7813 | 4036241.7656 |  |  |
|                 |                 | 408762.0000 | 4036235.3047 |  |  |
|                 |                 | 408781.4375 | 4036182.1367 |  |  |
|                 |                 | 408792.3125 | 4036136.7539 |  |  |
|                 |                 | 408830.6875 | 4036062.8320 |  |  |
|                 |                 | 408837.3750 | 4036051.0742 |  |  |
|                 |                 | 408843.3750 | 4036038.2383 |  |  |
|                 |                 | 408859.2500 | 4035986.2305 |  |  |
|                 |                 | 408864.9063 | 4035973.7852 |  |  |
|                 |                 | 408872.5625 | 4035948.5977 |  |  |
|                 |                 | 408873.2500 | 4035943.3984 |  |  |
|                 |                 | 408873.0906 | 4035940.5779 |  |  |
|                 |                 | 408876.8438 | 4035883.5859 |  |  |
|                 |                 | 408879.5000 | 4035815.1836 |  |  |
|                 |                 | 408878.5000 | 4035789.0859 |  |  |
|                 |                 | 408895.0000 | 4035711.7891 |  |  |
|                 |                 | 408893.7500 | 4035698.2695 |  |  |
|                 |                 | 408889.7188 | 4035685.5820 |  |  |
|                 |                 | 408880.0313 | 4035676.4922 |  |  |
|                 |                 | 408851.3125 | 4035629.3242 |  |  |
|                 |                 | 408843.4063 | 4035619.1055 |  |  |
|                 |                 | 408815.4375 | 4035538.7305 |  |  |
|                 |                 | 408817.2813 | 4035522.3750 |  |  |
|                 |                 | 408844.1875 | 4035466.7656 |  |  |
|                 |                 | 408840.3125 | 4035452.2110 |  |  |
|                 |                 | 408835.3750 | 4035436.3320 |  |  |
|                 |                 | 408817.2500 | 4035393.7461 |  |  |
|                 |                 | 408786.1250 | 4035323.3125 |  |  |
|                 |                 | 408765.4688 | 4035287.1992 |  |  |
|                 |                 | 408762.3875 | 4035264.5425 |  |  |
|                 |                 | 408762.4688 | 4035263.8984 |  |  |
|                 |                 | 408760.6563 | 4035251.8125 |  |  |
|                 |                 | 408757.9688 | 4035237.5742 |  |  |
|                 |                 | 408753.5938 | 4035225.4063 |  |  |
|                 |                 | 408747.6563 | 4035211.9453 |  |  |
|                 |                 | 408740.4063 | 4035199.5391 |  |  |
|                 |                 | 408730.8438 | 4035187.8711 |  |  |
|                 |                 | 408728.1888 | 4035185.3085 |  |  |
|                 |                 | 408719.7188 | 4035177.1328 |  |  |
|                 |                 | 408706.9063 | 4035167.7734 |  |  |
|                 |                 | 408693.5938 | 4035160.7617 |  |  |
|                 |                 | 408604.7254 | 4035159.7544 |  |  |
|                 |                 | 408513.1563 | 4035190.4727 |  |  |
|                 |                 | 408499.9375 | 4035192.5469 |  |  |
|                 |                 | 408432.2494 | 4035196.6703 |  |  |

# Exhibit 1 - PM10 Control Areas and Coordinates

| Phase 9/10 Area |                 |             |              |  |  |
|-----------------|-----------------|-------------|--------------|--|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |  |
|                 |                 | 408366.8901 | 4035211.7998 |  |  |
|                 |                 | 408341.8750 | 4035232.3789 |  |  |
|                 |                 | 408334.0313 | 4035251.2656 |  |  |
|                 |                 | 408321.6250 | 4035269.7930 |  |  |
|                 |                 | 408305.1875 | 4035283.0312 |  |  |
|                 |                 | 408288.6875 | 4035289.4570 |  |  |
|                 |                 | 408273.6330 | 4035299.0781 |  |  |
|                 |                 | 408258.5298 | 4035331.8132 |  |  |
|                 |                 | 408256.1826 | 4035344.2198 |  |  |
|                 |                 | 408238.4688 | 4035390.0430 |  |  |
|                 |                 | 408220.2813 | 4035482.1211 |  |  |
|                 |                 | 408214.2813 | 4035500.4219 |  |  |
|                 |                 | 408168.9063 | 4035551.6289 |  |  |
|                 |                 | 408124.9687 | 4035589.3789 |  |  |
|                 |                 | 408113.2283 | 4035598.0053 |  |  |
|                 |                 | 408113.0000 | 4035598.0703 |  |  |
|                 |                 | 408112.9178 | 4035598.2335 |  |  |
|                 |                 | 408108.5625 | 4035601.4336 |  |  |
|                 |                 | 408099.7812 | 4035620.1562 |  |  |
|                 |                 | 408097.9508 | 4035632.0474 |  |  |
|                 |                 | 408097.6563 | 4035632.8203 |  |  |
|                 |                 | 408097.0553 | 4035637.8653 |  |  |
|                 |                 | 408096.5000 | 4035641.4726 |  |  |
|                 |                 | 408096.5315 | 4035642.2625 |  |  |
|                 |                 | 408095.2813 | 4035652.7578 |  |  |
|                 |                 | 408095.8125 | 4035672.1563 |  |  |
|                 |                 | 408096.4063 | 4035692.6602 |  |  |
|                 |                 | 408130.6831 | 4035745.0568 |  |  |
|                 |                 | 408132.1875 | 4035757.6367 |  |  |
|                 |                 | 408135.0000 | 4035776.5781 |  |  |
|                 |                 | 408135.7450 | 4035781.2150 |  |  |
|                 |                 | 408132.6875 | 4035844.1211 |  |  |
|                 |                 | 408137.9688 | 4035860.2188 |  |  |
|                 |                 | 408150.6250 | 4035868.3906 |  |  |
|                 |                 | 408158.6250 | 4035864.0625 |  |  |
|                 |                 | 408159.2188 | 4035864.1250 |  |  |
|                 |                 | 408159.9063 | 4035863.3750 |  |  |
|                 |                 | 408167.1875 | 4035859.4375 |  |  |
|                 |                 | 408172.0534 | 4035854.2357 |  |  |
|                 |                 | 408196.3125 | 4035838.2109 |  |  |
|                 |                 | 408266.8750 | 4035787.7461 |  |  |
|                 |                 | 408295.9375 | 4035789.6328 |  |  |
|                 |                 | 408332.2369 | 4035822.6743 |  |  |
|                 |                 | 408338.7188 | 4035833.7969 |  |  |
|                 |                 | 408342.2470 | 4035836.5598 |  |  |
|                 |                 | 408342.9688 | 4035837.1250 |  |  |
|                 |                 | 408342.9688 | 4035837.1406 |  |  |

# Exhibit 1 - PM10 Control Areas and Coordinates

| Phase 9/10 Area |                 |             |              |  |
|-----------------|-----------------|-------------|--------------|--|
| Area ID         | Area (sq miles) | UTM X       | UTM Y        |  |
|                 |                 | 408343.0625 | 4035837.2109 |  |
|                 |                 | 408347.9063 | 4035841.0117 |  |
|                 |                 | 408354.9375 | 4035850.0313 |  |
|                 |                 | 408356.5000 | 4035850.6875 |  |
|                 |                 | 408361.0625 | 4035857.0039 |  |
|                 |                 | 408365.0938 | 4035857.2539 |  |
|                 |                 | 408367.7188 | 4035859.9414 |  |
|                 |                 | 408378.3750 | 4035868.6875 |  |
|                 |                 | 408384.4063 | 4035886.2578 |  |
|                 |                 | 408387.1466 | 4035898.8420 |  |
|                 |                 | 408389.2813 | 4035908.6445 |  |
|                 |                 | 408392.2500 | 4035932.2969 |  |
|                 |                 | 408391.5000 | 4035954.7578 |  |
|                 |                 | 408393.2500 | 4035976.0977 |  |
|                 |                 | 408393.7500 | 4035998.4492 |  |
|                 |                 | 408391.9063 | 4036022.1992 |  |
|                 |                 | 408388.5313 | 4036046.6602 |  |
|                 |                 | 408383.6875 | 4036069.8164 |  |
|                 |                 | 408382.4063 | 4036094.4531 |  |
|                 |                 | 408381.9990 | 4036102.1378 |  |
|                 |                 | 408381.7363 | 4036107.0950 |  |
|                 |                 | 408381.1250 | 4036118.6289 |  |
|                 |                 | 408374.8125 | 4036140.0391 |  |
|                 |                 | 408375.0938 | 4036142.6250 |  |
|                 |                 | 408373.2500 | 4036144.5430 |  |
|                 |                 | 408376.3438 | 4036153.9297 |  |
|                 |                 | 408376.8125 | 4036158.0781 |  |
|                 |                 | 408376.9612 | 4036159.8220 |  |

# Exhibit 1 - PM10 Control Areas and Coordinates



2/2/2016 3:40:27 PM



# Exhibit 3 - Shallow Flood control efficiency curve



Exhibit4DynamicWaterManagementPlan.mxd

| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | PETER HSIAO (BAR NO. 119881)<br>PHsiao@mofo.com<br>WIRGINIA M. CHOI (BAR NO. 294659)<br>VChoi@mofo.com<br>MORRISON & FOERSTER LLP<br>707 Wilshire Boulevard, Suite 6000<br>Los Angeles, California 90017-3543<br>Telephone: 213.892.5200<br>Facsimile: 213.892.5454<br>Attorneys for Respondent and Defendant<br>GREAT BASIN UNIFIED AIR POLLUTION CO<br>DISTRICT<br>SUPERIOR COURT OF THE<br>COUNTY OF SA<br>CITY OF LOS ANGELES, a California<br>Municipal Corporation, ACTING BY AND<br>THROUGH ITS DEPARTMENT OF WATER<br>AND POWER,<br>Petitioner and Plaintiff,<br>v.<br>CALIFORNIA AIR RESOURCES BOARD;<br>EXECUTIVE OFFICER OF THE<br>CALIFORNIA AIR RESOURCES BOARD, in<br>its official capacity; GREAT BASIN UNIFIED<br>AIR POLLUTION CONTROL DISTRICT; and<br>DOES 1-100,<br>Respondents and<br>Defendants.<br>CALIFORNIA STATE LANDS<br>COMMISSION; and DOES 101-500,<br>Real Parties in Interest. | Exempt from Filing Fees   Government Code § 6103     Image: Constraint of the strain of the straint |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 27<br>28                                                                                                                                                    | la-1255083<br>STIPULATED JUDGMENT FOR RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SPONDENT AND DEFENDANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

\_\_\_\_

| 1  | MICHAEL N. FEUER (SBN 111529)                                                                          |
|----|--------------------------------------------------------------------------------------------------------|
| 2  | RICHARD M. BROWN (SBN 041277)                                                                          |
| 3  | General Counsel Water and Power<br>JULIE C. RILEY (SBN 197407)                                         |
| 4  | Deputy City Attorney                                                                                   |
| 5  | Los Angeles, CA 90051                                                                                  |
| 6  | Telephone: (213) 367-4500<br>Emails: Mike.Feuer@la.city.org; Richard.Brown@ladwp.com;                  |
| 7  | Julie.Riley@ladwp.com                                                                                  |
| 8  | EDWARD J. CASEY (SBN 119571)<br>JOCEL VN D. THOMPSON (SBN 106544)                                      |
| 9  | ALSTON & BIRD LLP                                                                                      |
| 10 | 333 South Hope Street, Sixteenth Floor<br>Los Angeles, California 90071                                |
| 11 | Telephone: (213) 576-1000<br>Facsimile: (213) 576-1100                                                 |
| 12 | Emails: ed.casey@alston.com; jocelyn.thompson@alston.com                                               |
| 13 | Attorneys for Petitioner and Plaintiff                                                                 |
| 14 | CITY OF LOS ANGELES, a California Municipal Corporation,<br>ACTING BY AND THROUGH ITS DEPARTMENT       |
| 15 | OF WATER AND POWER                                                                                     |
| 16 |                                                                                                        |
| 17 |                                                                                                        |
| 18 |                                                                                                        |
| 19 |                                                                                                        |
| 20 |                                                                                                        |
| 21 |                                                                                                        |
| 22 |                                                                                                        |
| 23 |                                                                                                        |
| 24 |                                                                                                        |
| 25 |                                                                                                        |
| 26 |                                                                                                        |
| 27 |                                                                                                        |
| 28 |                                                                                                        |
|    | la-1255083                                                                                             |
|    | STIPULATED JUDGMENT FOR RESPONDENT AND DEFENDANT<br>GREAT BASIN UNIFIED AIR POLLUTION CONTROL DISTRICT |

٠

Petitioner and Plaintiff CITY OF LOS ANGELES, a California Municipal Corporation, 1 ACTING BY AND THROUGH ITS DEPARTMENT OF WATER AND POWER ("Petitioner" 2 or "City") and Respondent and Defendant GREAT BASIN UNIFIED AIR POLLUTION 3 CONTROL DISTRICT ("District") (collectively "Parties"), having agreed and consented to the 4 entry of this stipulated judgment for the Respondents and Defendants ("Stipulated Judgment") 5 containing the terms specified below, and the Court having been presented with the Stipulated 6 Judgment and reviewed its terms, the Court hereby approves the Stipulated Judgment and these 7 8 terms, and issues the following orders: **RECITALS BY THE PARTIES** 9 The District is a unified air pollution control district as provided by Division 26, A. 10 Part 3. Chapter 3 of the California Health and Safety Code and consists of all of Inyo, Mono and 11 Alpine counties. 12 B. The City is a charter city in the State of California, and its Department of Water 13 and Power ("LADWP") is a proprietary department of the City. The LADWP is responsible for 14 15 providing water and power to the residents of Los Angeles. Its duties include operating the Los 16 Angeles Aqueduct, which transports water from the Eastern Sierra region to Southern California. C. 17 The dispute between the parties concerns the control of air pollution from Owens 18 Lake. Owens Lake is located in Inyo County in eastern California, south of the town of Lone 19 Pine and north of the town of Olancha. 20 D. Large portions of the Owens Lake bed are comprised primarily of dry saline soils 21 and crusts. The City's water diversions from the Owens Valley, including by the use of the Los

22 Angeles Aqueduct, has exposed lake bed areas.

E. The lake bed soils and crusts are a source of wind-borne dust during significant
wind events, and contribute to elevated concentrations of particulate matter less than 10 microns
in diameter ("PM<sub>10</sub>").

F. PM<sub>10</sub> is a criteria pollutant regulated by the federal Clean Air Act, 42 U.S.C.
Section 7401 *et seq.*, as amended ("CAA").

28

STIPULATED JUDGMENT FOR RESPONDENT AND DEFENDANT GREAT BASIN UNIFIED AIR POLLUTION CONTROL DISTRICT

la-1255083

G. Under the National Ambient Air Quality Standard ("NAAQS") adopted pursuant
to the CAA, PM<sub>10</sub> levels may not exceed an average concentration of 150 micrograms per cubic
meter ("µg/m<sup>3</sup>") during a 24-hour period more than one time per calendar year averaged over
three years.

H. The CAA further requires the U.S. Environmental Protection Agency ("EPA") to
divide each state into air quality control regions. Each region is characterized as either
"attainment" or "non-attainment" for each identified air pollutant, depending on whether the
monitored level of that air pollutant in that region is at or below (attainment) or above (nonattainment) the level mandated by the NAAQS.

I. Once the EPA establishes the NAAQS, the states have the primary responsibility
 to prepare a State Implementation Plan ("SIP") for achieving and maintaining the NAAQS within
 each air quality control region within the state. The SIP must establish "enforceable emission
 limitations and other control measures" designed to, among other things, achieve attainment in
 non-attainment regions within the state.

J. The California Legislature delegated responsibility and authority to meet the
 CAA's SIP requirements to Respondent CARB and authorized CARB to implement this
 requirement through the creation of thirty-five (35) air pollution control districts.

18 K. On August 7, 1987, the EPA designated the Owens Valley Planning Area
19 ("OVPA") as one of the regions in California in violation of the PM<sub>10</sub> NAAQS. The EPA
20 designated the OVPA as a "serious nonattainment area" for PM<sub>10</sub>.

L. In addition to the federal NAAQS, the State of California has adopted a PM<sub>10</sub>
 standard ("State Standard"). The State Standard is violated when monitors record PM<sub>10</sub>
 concentrations greater than 50 μg/m<sup>3</sup> averaged over a 24-hour period.

M. The District has regulatory authority over air quality issues in the OVPA where
Owens Lake is situated.

N. Health and Safety Code Section 42316 ("Section 42316"), enacted by the
California Legislature in 1983, provides in part that the District has authority to require the City
to undertake reasonable measures at Owens Lake in order to address the impacts of its activities
la-1255083 2

STIPULATED JUDGMENT FOR RESPONDENT AND DEFENDANT GREAT BASIN UNIFIED AIR POLLUTION CONTROL DISTRICT that cause or contribute to violations of federal and state air quality standards, including but not
 limited to the NAAQS and State Standard for PM<sub>10</sub>.

O. In November 1998, the District submitted to EPA its 1998 SIP. In September
1999, the EPA approved the 1998 SIP. The District and the City agreed to the provisions in the
1998 SIP and requested EPA to extend the attainment deadline for the OVPA. In September
1999, the EPA approved the 1998 SIP and extended the attainment deadline by five years, from
December 31, 2001 to December 31, 2006.

P. The 1998 SIP provides three allowable mitigation control measures that are
approved as Best Available Control Measures ("BACM") that the City may select for use at the
dried Owens Lake bed: (1) shallow flooding; (2) managed vegetation; or (3) gravel cover.

Q. Under the CAA at 42 U.S.C. § 7513(e), for areas receiving extensions of the
original attainment date, the SIP shall provide for implementation of "the most stringent measures
that are included in the implementation plan of any State or are achieved in practice in any State,
and can feasibly be implemented in the [nonattainment] area."

R. In 2003, the District revised the 1998 SIP and submitted the 2003 SIP to EPA for
approval. The 2003 SIP requires most stringent measures ("MSM") BACM controls. EPA has
not taken action on the 2003 SIP.

In 2005, the City disputed orders issued by the District under Section 42316 for
additional air pollution controls at the dried Owens Lake bed. To resolve this dispute, the City
and the District entered into a settlement agreement. Pursuant to that agreement, the District
agreed to submit revisions to the 2003 SIP. For this purpose, in 2008, the District adopted Board
Order No. 080128-01 and submitted the order as the 2008 SIP ("2008 SIP Order"). CARB
approved the 2008 SIP Order and submitted it to the EPA for approval, which is pending before
EPA. The 2008 SIP also requires MSM BACM controls.

T. On or about August 1, 2011, the District issued the 2011 SCRD which ordered the
City to install additional dust control measures on approximately 2.86 square miles of the dried
Owens Lake bed to meet the NAAQS for PM<sub>10</sub>. These are known as the Phase 9 dust control
areas.
la-1255083 3

U. The City appealed the 2011 SCRD under Section 42316(b). On June 15, 2012, the
 Executive Officer of the CARB held a hearing on the City's appeal. On November 19, 2012, the
 CARB issued its written decision denying the City's appeal and affirming the 2011 SCRD
 ("CARB Decision").

On or about December 10, 2012, the City filed a Verified Petition for Writ of V. 5 Mandate in this action entitled City of Los Angeles, et al. v California Air Resources Board, Los 6 Angeles County Superior Court, Case No. BS140620 (the "Action"). This Action was transferred 7 to the Sacramento County Superior Court and the City filed a First Amended Verified Petition for 8 9 Writ of Mandate and Complaint for Declaratory Relief on or about August 30, 2013 ("Amended Petition'). The District filed its Answer to the Amended Petition on September 30, 2013. The 10 Action in part appeals the CARB Decision pursuant to Sections 42316 and Civil Procedure Code 11 Section 1094.5. On September 25, 2014, the Court issued a tentative ruling denying the City's 12 13 petition for writ of mandate and ordering entry of judgment for Respondents and Defendants. A hearing was held on September 26, 2014 and after oral argument, the Court took the matter under 14 15 submission pending the issuance of its final ruling and order. 16 W.

W. On November 16, 2012, the District issued the 2012 SCRD which ordered the City
to install additional 0.76 square miles of dust control measures on the dried Owens Lake bed to
meet the NAAQS for PM<sub>10</sub>. These are known as the Phase 10 dust control areas.

19 X. The City appealed the 2012 SCRD under Section 42316(b). On April 18, 2014,
20 the Executive Officer of the CARB held a hearing on the City's appeal. A decision on this appeal
21 is pending.

Y. On April 4, 2014, the District issued the 2013 SCRD which stated that no
additional areas of the lake bed required controls at that time. On August 6, 2014, the District
issued its preliminary 2014 SCRD which also stated that no additional areas of the lake bed
required controls at that time.

Z. Based on data collected, the 2011, 2012, 2013 and 2014 SCRDs, modeling and
 experience by the District to date, the District estimates that the City's control of dust emissions
 by applying BACM to 48.6 square miles of the dried Owens Lake bed, and the District's control
 <u>la-1255083</u>
 <u>stipulated JUDGMENT FOR RESPONDENT AND DEFENDANT</u>

GREAT BASIN UNIFIED AIR POLLUTION CONTROL DISTRICT

of dust emissions from the adjacent Keeler Dunes will reduce emissions in the OVPA such that it
 can attain the NAAQS. Further monitoring and data collection will be needed to confirm the
 estimates of attainment.

AA. The Parties acknowledge the need to control dust from the lakebed caused by the
City's water production activities and for additional effective dust control measures that do not
rely on water that can be substituted in areas currently under control or applied in areas ordered to
be controlled.

8 BB. The Parties further acknowledge the need to balance the requirements to control
9 dust emissions and conserve water with the requirements to minimize impacts to cultural and
10 biological resources.

11 CC. Now, therefore, after extensive negotiations to resolve their disputes, the Parties 12 have reached a settlement with the terms contained herein, and agree to entry of this Stipulated 13 Judgment to resolve this action and their disputes including those stated in the Amended Petition 14 and the District's Answer, and those regarding the 2011 SCRD, 2012 SCRD, 2013 SCRD and 15 2014 SCRD under Section 42316.

STIPULATED JUDGMENT

17 1. Entry of Judgment. The Court orders that final judgment on the Petition and Complaint in this action, including all terms contained herein, be entered for Respondent and 18 19 Defendant District against Petitioner and Plaintiff on all causes of action in the pending First 20 Amended Petition and Complaint ("Judgment"). The Judgment shall constitute final judgment 21 resolving all claims and defenses alleged in the Amended Petition and the Answer filed by the 22 District. The Parties agree not to appeal or further contest this Judgment. The Judgment shall 23 consists of any final ruling and order by this Court on the City's writ of mandate as referenced in 24 Preamble Paragraph V, which shall be attached as Attachment A to this Stipulated Judgment, and 25 the additional terms contained herein, which the Parties stipulate are consistent with the Court's 26 order. 27 111

28 ///

16

5 STIPULATED JUDGMENT FOR RESPONDENT AND DEFENDANT GREAT BASIN UNIFIED AIR POLLUTION CONTROL DISTRICT

la-1255083

# 2. <u>Phase 9/10 Project to Implement 2011 and 2012 Supplemental Control</u> Requirement Determinations

A. By December 31, 2017, the City shall construct a dust control project to complete the Phase 9 and Phase 10 dust controls by selecting and installing BACM on 3.62 square miles of areas identified in the 2011 SCRD and 2012 SCRD (collectively referred to as the "Phase 9/10" project). The Phase 9/10 project shall bring the total area of the City's dust controls on the Owens Lake bed to 48.6 square miles. The construction deadline set forth in this paragraph is subject to the Force Majeure and Stipulated Penalties provisions set forth in Paragraphs 14 and 15 below.

B. The City may submit an application to the APCO to approve modifications
to the City's proposed project or measures on certain areas that are determined to contain
significant cultural resources. The District shall consider and decide the City's application under
the procedures contained in the 2013 Stipulated Abatement Order No. 130819-01.

C. The Phase 9/10 project will use dust control measures that are waterless or
"water neutral" by offsetting any new or increased water use with water savings elsewhere on the
lakebed.

D. Within 60 days of the court's entry of this Stipulated Judgment, the City shall prepare and submit for the APCO's consideration and written approval, which approval shall not be unreasonably withheld, a Remedial Action Plan ("RAP") for the Phase 9/10 project that provides for project completion by December 31, 2017. The plan shall contain intermediate milestones specifying the completion dates for CEQA compliance (and to the extent joint documents are prepared under CEQA and NEPA, for CEQA/NEPA compliance), construction bid award and control measure compliance.

E. Upon completion of the Phase 9/10 project, and any additional BACM
Contingency Measures as provided in Paragraph 3 below, the City shall permanently operate dust
controls with approved BACM on those areas and all other existing areas where the City has
installed and operates dust controls on the dried Owens Lake bed, except as provided by a SIP for
BACM testing and development.
la-1255083 6

STIPULATED JUDGMENT FOR RESPONDENT AND DEFENDANT GREAT BASIN UNIFIED AIR POLLUTION CONTROL DISTRICT

1

2

3.

1

# Additional BACM Contingency Measures

To provide the emission reductions necessary to meet the NAAQS in the 2 Α OVPA, the District's Air Pollution Control Officer ("APCO") may order the City on or any time 3 after January 1, 2016 to implement additional BACM contingency measure controls on up to 4.8 4 square miles (which need not be contiguous) of the dried Owens Lake bed ("BACM Contingency 5 Measures"). If the City implements the entire 4.8 square miles of BACM Contingency Measure 6 controls, there will be a total of 53.4 square miles of dust controls on the Owens Lake bed. Any 7 BACM Contingency Measure orders shall be based on evidence presented to the APCO that the 8 area considered for such order has caused or contributed to an exceedance of the NAAQS or State 9 Standard. Areas that are deferred for controls under the procedures in Paragraph 2.B because of 10 the presence of significant cultural resources, then re-ordered for controls per those procedures, 11 shall not be counted as part of the 4.8 square miles allowed for BACM Contingency Measures. 12 Although the City may provide comment on a proposed BACM Contingency Measures order by 13 the APCO, the City shall not appeal or contest the APCO's order for dust controls included in the 14 combined 53.4 square miles now or in the future in any administrative or judicial forum, under 15 16 any law, statute or legal theory whatsoever including Section 42316.

17 Β. Except for the 4.8 square mile BACM Contingency Measure area and any 18 area re-ordered for control under Paragraph 2.B of this Judgment, the District shall not issue any 19 further orders for mitigation measures to the City under Section 42316 or any other law, including 20 but not limited to SCRDs, requiring the City to control windblown dust emissions (including PM 21 10, PM 2.5 or any speciated components or products of PM) from any areas on the dried Owens 22 Lake bed beyond the combined 53.4 square miles. The provisions in this paragraph do not apply 23 to fee orders issued to the City under Section 42316, or any orders for areas that are not on the 24 dried Owens Lake bed.

C. The BACM Contingency Measures provided under this paragraph will be limited to the Owens Lake bed below elevation 3,600.00 feet above mean sea level ("amsl") and above the natural brine pool at elevation 3,553.55 feet amsl.

D. The BACM Contingency Measures areas will be controlled with waterless

 la-1255083
 7

 STIPULATED JUDGMENT FOR RESPONDENT AND DEFENDANT

GREAT BASIN UNIFIED AIR POLLUTION CONTROL DISTRICT

28

or water-neutral dust control measures by offsetting any new or increased water use with water 1 2 savings elsewhere on the lakebed.

The BACM Contingency Measures shall be installed by the City and be E. 3 operational within three years of the date that the APCO orders City to implement the BACM 4 Contingency Measures, except that if the City selects the use of managed vegetation for its 5 BACM for any of the areas ordered for BACM Contingency Measures, the City will be allowed 6 an additional two years to achieve full vegetation-cover compliance for those areas. The 7 implementation deadline set forth in this paragraph is subject to the Force Majeure and Stipulated 8 9 Penalties provisions set forth in Paragraphs 14 and 15 below. The City shall be solely responsible for all CEQA compliance, and to the extent joint documents are prepared under CEQA and 10 NEPA, for CEQA/NEPA compliance, and all lease and permit requirements associated with any 11 12 Contingency Measures.

13 F. Within 60 days of the date that the APCO orders City to implement the 14 BACM Contingency Measures, the City shall prepare and submit for the APCO's consideration 15 and written approval, which approval shall not be unreasonably withheld, a RAP that provides for 16 the completion of those measures by the time deadlines provided in Paragraph 3.E above. The 17 plan shall contain intermediate milestones specifying the completion dates for CEQA/NEPA 18 compliance, construction bid award and control measure compliance.

19

# Monitoring

4.

20 A. For PM<sub>10</sub> monitoring, the City shall grant an irrevocable right in perpetuity 21 to the District to site air monitors on City-occupied or unoccupied property in communities 22 located in the OVPA at the District's sole discretion, shall provide electric power to those 23 monitors if such power source is under the City's control, and shall not interfere with the 24 operation of those monitors, cut off their power supply (except for planned or emergency system 25 outages), or take any other action to evict or remove the monitors. 5. 26

27

Tillage with BACM Backup (TwB2)

A. In addition to the approved BACM in the 2008 SIP Order, the City may 28 select a variation on the Shallow Flood BACM called Tillage with BACM Backup ("TwB2"). la-1255083 STIPULATED JUDGMENT FOR RESPONDENT AND DEFENDANT

GREAT BASIN UNIFIED AIR POLLUTION CONTROL DISTRICT

TwB2 is a District-approved variation of the approved Shallow Flood BACM that wets and/or 1 roughens emissive Owens Lake bed surfaces to prevent air emissions. TwB2 consists of soil 2 tilling and/or wetting within all or portions of Shallow Flood BACM PM10 control areas (TwB2 3 Areas) where sufficient shallow flood infrastructure and available water supply exists. The City 4 shall at all times maintain all TwB2 areas in compliance with all conditions and procedures 5 contained in this Stipulated Judgment such that TwB2 areas do not cause or contribute to 6 exceedances of the PM10 Standard. The City shall have the sole duty to obtain all required 7 approvals and permits required by law for TwB2. The District will support the City's efforts to 8 9 obtain these approvals and permits in compliance with the law.

B. The City's selection and implementation of TwB2 shall comply with the
"Protocol for Operation and Maintenance of Owens Lake Tillage with BACM Backup" attached
hereto and made part of this Stipulated Judgment as Attachment B ("TwB2 Operations
Protocol"). The TwB2 Operations Protocol addresses site selection, site dry-down, measures to
prevent untilled drying surfaces from becoming emissive during dry-down, tilling, maintenance
and rewetting. The City shall have sole discretion to modify the Operations Protocol as necessary
to ensure efficient operation of TwB2.

C. 17 The District's monitoring and enforcement of TwB2 Areas shall comply 18 with the "Protocol for Monitoring and Enforcing Owens Lake Tillage with BACM Backup" 19 attached hereto and made part of this Stipulated Judgment as Attachment C ("TwB2 Monitoring 20 Protocol"). This protocol describes the data to be collected and methods of analysis to determine 21 if TwB2 areas on the Owens Lake bed need maintenance and/or reflooding in order to maintain or 22 reestablish control efficiency for compliance with the PM<sub>10</sub> NAAQS. Based on data and after 23 consulting with the City, the APCO shall have sole discretion to modify the TwB2 Monitoring 24 Protocol in writing as necessary to ensure air quality protection.

D. The APCO may order, and the City is required to reflood a TwB2 area as provided in the TwB2 Monitoring Protocol. Within 37 days of notification by the APCO that a TwB2 area must be reflooded, the City shall complete reflooding of that area in accordance with approved Shallow Flooding BACM requirements. The City shall not appeal or contest the TwB2 la-1255083 9 STIPULATED JUDGMENT FOR RESPONDENT AND DEFENDANT

STIPULATED JUDGMENT FOR RESPONDENT AND DEFENDANT GREAT BASIN UNIFIED AIR POLLUTION CONTROL DISTRICT Protocol, any revisions to that protocol that comply with this Paragraph 5, or the APCO's order to
reflood a TwB2 area now or in the future in any administrative or judicial forum, under any law,
statute or legal theory whatsoever including Section 42316, except the City may contest an APCO
order to reflood a TwB2 area on the sole basis that the APCO did not follow the TwB2
Monitoring Protocol. Such a challenge shall be brought exclusively to this Court to enforce this
Stipulated Judgment, and not by an appeal under Section 42316 or by any challenge in any other
administrative or judicial forum.

The Parties agree to periodic joint inspections of the TwB2 Areas by the 8 E. District and the City. The Parties shall agree to a standing time for meetings at least every other 9 week after the City commences tillage for TwB2 to discuss the status of the surface conditions, 10 whether re-tilling or re-flooding should be ordered to avoid unlawful dust emissions, and to foster 11 collaboration and cooperation at the staff level. The District will provide the City with at least 12 24-hour notification of the time and location of the District's TwB2 field inspections and testing. 13 Although the presence of City staff is not required during these inspections and testing by the 14 15 District, this prior notification will give the City the opportunity to observe any TwB2 monitoring 16 that the APCO will use to determine if a TwB2 area should be flooded.

F. The City may at its discretion file an application with the District to seek
approval of tillage without TwB2 as BACM. The Parties shall follow the process in the 2008 SIP
Order for this application.

G. The City shall be solely responsible to obtain all required approvals and
permits required to implement TwB2. The District will support the City's efforts to obtain such
approvals in compliance with the law.

23

# 6. <u>New and refined dust control measures</u>

A. The District will review new or refined dust control measures proposed by the City, and will approve a measure as MSM BACM if the District determines that the measure is consistent with the federal EPA's interpretation of the term Best Available Control Measure under the federal Clean Air Act and implementation of MSM as required for the Owens Valley nonattainment area. In assessing whether a dust control measure (including a new measure or la-1255083 10

STIPULATED JUDGMENT FOR RESPONDENT AND DEFENDANT GREAT BASIN UNIFIED AIR POLLUTION CONTROL DISTRICT extension of a previously identified measure to a new area) is BACM, the District will consider
 the technological feasibility of the measure, as well as energy, environmental, and economic
 impacts and other costs.

B. The Parties will continue to collaborate on the expedited testing of Tillage,
Engineered Roughness Elements, Lake Brine and Dust Palliative Chemicals as candidate
BACMs. The Parties further agree to identify additional candidate BACMs, as appropriate. New
dust control measures should be waterless, where feasible. Where not feasible, new dust control
measures should be water neutral by offsetting any new or increased water use with water savings
elsewhere on the lakebed.

10 C. The Parties commit to a minimum of quarterly meetings and field visits to
11 discuss and review BACM testing.

12

19

# 7. Lake-wide efforts to reduce water use

A. The City and the District commit to work together to jointly develop and propose "Dynamic Water Management" actions for incorporation into the 2015 SIP revision referenced in Paragraph 11. These actions may include "early water ramp-down" in non-emissive years. TwB2 is not a Dynamic Water Management concept. The proposed actions shall set forth the conditions upon which the APCO can approve the City's application to undertake these dynamic water management actions.

# 8. <u>Revision to the 2008 SIP Transition Procedure</u>

A. The District shall amend the 2008 SIP Order to increase the Transition
Area project size limitation from 0.5 square miles for Managed Vegetation BACM, or 1.5 square
miles for other BACM, as provided in Attachment D, Section 3 to the 2008 SIP Order, to 3.0
square mile at one time. The 3.0 square mile Transition Area shall be in addition to the TwB2
Areas implemented by the City as provide in Paragraph 5 above.

B. The City shall control emissions during Transition Area project
construction periods as provided in the 2008 SIP Order at Attachment D, Section 3, and the

27 Stipulated Abatement Order No. 110317-01 at Paragraph 8, dated March 17, 2011.

28 C. The City shall only conduct construction of a Transition Area project <u>la-1255083</u> <u>11</u> STIPULATED JUDGMENT FOR RESPONDENT AND DEFENDANT

GREAT BASIN UNIFIED AIR POLLUTION CONTROL DISTRICT

between July 1 of year when on-site work on the project begins, through December 31 of the next
 year when all such work shall be completed and the new controls shall be fully installed and
 operational. The completion deadline set forth in this paragraph is subject to the Force Majeure
 and Stipulated Penalties provisions set forth in Paragraphs 14 and 15 below.

5

# 9. Cultural and Biological Resources

6 Cultural and biological resource protection and mitigation shall be incorporated to
7 the extent feasible as required by law into the design of dust control areas.

8

# 10. Collaboration with Other Agencies

9 The Parties agree to collaborate in their efforts to secure support for the Α. terms of this agreement, agreement implementation, and obtaining necessary permits, leases and 10 11 approvals with the California Air Resources Board, California Department of Fish and Wildlife, 12 California State Historic Preservation Office, California State Lands Commission, California 13 Native American Heritage Commission, U.S. Army Corps of Engineers, U.S. Bureau of Land 14 Management, U.S. Environmental Protection Agency and private parties owning land in the areas 15 to be controlled in Phases 9 and 10. The Parties plan to continue to meet with these agencies to 16 prepare them for favorable decisions on future dust control projects and revisions to the SIP. 17 Β. The Parties are aware that all final approvals necessary for TwB2 may not

be obtained before this Stipulated Judgment is executed and approved, and anticipate obtaining
those approvals after the entry of this judgment.

20

# 11. 2015 SIP revision and CEQA/NEPA compliance

A. By July 1, 2015, the City shall prepare and consider for certification the
environmental impact analysis documents required by the California Environmental Quality Act
("CEQA") and, if applicable, the National Environmental Policy Act ("NEPA") necessary to
proceed with Phase 9/10 Project.

B. By December 31, 2015, the District shall prepare a SIP revision that
consists of the 2008 SIP Order and the provisions of this Stipulated Judgment ("2015 SIP
Order"). The City shall support and not challenge the adoption of the 2015 SIP Order by the
District Governing Board, CARB and EPA, except that the City may challenge any new term that
la-1255083 12

STIPULATED JUDGMENT FOR RESPONDENT AND DEFENDANT GREAT BASIN UNIFIED AIR POLLUTION CONTROL DISTRICT the City has not agreed to in advance, and that is not contained in the 2008 SIP Order as modified
 by this Stipulated Judgment.

C. The City shall not appeal or contest the 2015 SIP Order that contain the terms of this Stipulated Judgment now or in the future in any administrative or judicial forum, under any law, statute or legal theory whatsoever including CEQA or Section 42316, and agrees that the terms of that 2015 SIP Order are valid and reasonable under Section 42316.

D. The District intends to act as a responsible agency and use the City's Phase
9/10 CEQA/NEPA documents to act on the SIP revision. If the City's CEQA/NEPA document is
not adequate for the District's approval purposes, the District shall have until December 31, 2016
to act on the SIP revision.

E. The Parties have developed the terms of this Stipulated Judgment with the intention that its provisions will be incorporated into the 2015 SIP Order and are consistent with applicable provisions of federal, state and local law, including Section 42316, including all applicable provisions of federal law regarding attainment of the NAAQS and exceptional events.

15

# 12. Owens Lake Scientific Advisory Panel

A. The Parties agree to establish the Owens Lake Scientific Advisory Panel
("OLSAP" or "Panel") under the authority of the California Health and Safety Code Section
42316 and the Los Angeles City Charter. The Parties will contract with the National Academy of
Sciences ("NAS") to establish, staff and administer the OLSAP pursuant to the NAS study
process found at <a href="http://www.nationalacademies.org/studyprocess/index.html">http://www.nationalacademies.org/studyprocess/index.html</a>.

Β. 21 The purpose of OLSAP is to evaluate, assess and provide ongoing advice 22 on the reduction of airborne dust in the Owens Valley. The Panel will review scientific and 23 technical issues related to the research, development and implementation of waterless and low-24 water use BACM, and other approaches to reduce dust in the Owens Valley. The Parties intend 25 for the Panel to foster communication and understanding on the scientific and technical 26 approaches and become a vehicle for increased cooperation and collaboration between District 27 and the City in balancing the requirement to meet air quality standards and conserve water. 28 С. The Panel will hold meetings, analyze issues, review and compile la-1255083 13

### STIPULATED JUDGMENT FOR RESPONDENT AND DEFENDANT GREAT BASIN UNIFIED AIR POLLUTION CONTROL DISTRICT

information, produce reports, make recommendations and undertake other activities necessary to 1 meet its responsibilities. The Panel will initially be assigned the following task: 2 Evaluate the effectiveness of alternative dust control methodologies i. 3 for their degree of PM<sub>10</sub> reduction at the Owens Lake bed and reduce use of water in controlling 4 dust emissions from the dried lake beds. The evaluation should consider associated energy, 5 environmental and economic impacts, and assess the durability and reliability of such control 6 7 methods. Additional issues for the NAS may be submitted to the Panel by the General Manager of 8 9 the Los Angeles Department of Water and Power ("LADWP"), or the APCO. The OLSAP shall 10 function per the "Study Process: Guidelines of the NAS" found at http://www.nationalacademies.org/studyprocess/index.html. The City and the District will 11 promptly respond to requests for information from the Panel. 12 Term and Estimated Number and Frequency of Meetings. Until January 1, D. 13 2025, the Panel will meet in person at least once annually. When actively working on issues, the 14 Panel shall meet in person at least two times a year. The Panel may meet more often in person, 15 16 telephonically or by other networked conferencing means as needed. When issues are referred to 17 the Panel, the Panel shall convene to discuss within 60 days, provide an initial work plan within three (3) months and a final report within eighteen (18) months, unless an extension is granted by 18 19 agreement of both parties. 20 E. The NAS will submit the Panel's reports to the Chair of the District Governing Board and the APCO, and the President of the Board of the LADWP and General 21 Manager of LADWP. 22 F. 23 The duties of OLSAP are solely advisory in nature and in no way alter the 24 authority and responsibility of the District, District Board or the APCO. The City and the District 25 will give due consideration to the Panel's findings and recommendations. 26 G. All financial support for the OLSAP shall be provided by the City pursuant 27 to fee orders from the District under Section 42316. The Parties estimate that the annual costs of 28 the Panel will be approximately \$500,000 to \$750,000, but may vary based on the statement of la-1255083 14 STIPULATED JUDGMENT FOR RESPONDENT AND DEFENDANT GREAT BASIN UNIFIED AIR POLLUTION CONTROL DISTRICT

work and tasks submitted to the NAS. The City shall be responsible to provide additional
 funding to the Panel for reporting and analyzing new and relevant testing data up to \$2,000,000
 annually. The City and the District will make best efforts to jointly seek further funding and in kind support opportunities from other organizations.

5

# 13. Sacramento lawsuit and pending CARB appeals

A. The Parties stipulate and agree that all terms in the Stipulated Judgment are valid
and reasonable under Section 42316 and under any and all other laws. The City waives any
challenge to the terms of this Stipulated Judgment and shall not now or in the future challenge or
oppose the terms of this Stipulated Judgment in any administrative or judicial forum, under any
law, statute or legal theory whatsoever including but limited to Section 42316.

Within three days of entry of this Stipulated Judgment, the City shall dismiss its Β. 11 appeal of the 2012 SCRD by the District if CARB has not yet issued its written decision on that 12 13 appeal. If CARB has issued that written decision on the 2012 SCRD appeal, that decision shall be deemed final and binding, and the City shall not appeal or otherwise challenge that CARB 14 15 decision to the Superior Court or in any other judicial or administrative forum. The City shall dismiss its appeal of the 2013 SCRD and not appeal the 2014 SCRD by the District. The City 16 17 shall not appeal or contest the 2012 SCRD, 2013 SCRD or 2014 SCRD now or in the future in 18 any administrative or judicial forum, under any law, statute or legal theory whatsoever including 19 Section 42316.

C. The CARB Decision referenced in Preamble Paragraph U shall be deemed final
and binding on the Parties. In addition, if the Court has issued its final ruling on the City's writ of
mandate as referenced in Preamble Paragraph V, that ruling shall also be deemed final and
binding on the Parties. The City shall not challenge the orders for BACM Contingency Measures
referenced in Paragraph 3.A, or the revised 2015 SIP as provided in Paragraph 11, based upon
any of the arguments asserted by the City in its appeals of the 2011 SCRD, 2012 SCRD, 2013
SCRD or 2014 SCRD, or in the instant case.

14. Force Majeure



27

(Paragraph 2.A), Contingency Measure projects (Paragraph 3.E), and Transition Area projects 1 (Paragraph 8.C), is defined as one of the following events that prevents the City's performance of 2 the specified act by the deadline set forth in that Paragraph: (a) any act of God, war, fire, 3 earthquake, windstorm, flood, severe drought that is declared as an official state of emergency by 4 the Governor of the State of California, or natural catastrophe; (b) unexpected and unintended 5 accidents (excluding those caused by the City or the negligence of its agents or employees); civil 6 disturbance, vandalism, sabotage or terrorism; (c) restraint by court order or public authority or 7 agency; (d) action or non-action by, or inability to obtain the necessary authorizations or 8 approvals from any governmental agency, provided that the City demonstrates it has made a 9 timely and complete application to the agency and used its best efforts to obtain that approval, or 10 (e) the inability to obtain private property owner access, provided that the City demonstrates it 11 has made a timely and complete request to the owner, and used its best efforts to obtain that 12 13 access. Force Majeure shall not include normal inclement weather, other asserted shortages of 14 water, economic hardship or inability to pay. 15 В. The City's performance of its duties under Paragraph 14.A will be temporarily

B. The City's performance of its duties under Paragraph 14.A will be temporarily postponed only during the condition of Force Majeure, but not excused, and the City will continue to be responsible to recommence performance of its actions to comply with the deadlines at the end of the Force Majeure event. The deadlines for performance shall automatically be extended by the period of interruption caused by the Force Majeure event. The City shall exercise due diligence to resolve and remove any Force Majeure event. Nothing in this paragraph shall be interpreted to relieve the City of its obligations and duties under all applicable laws.

C. Any party seeking to rely upon this paragraph to excuse or postpone performance under Paragraph 14.A shall have the burden of establishing each of these elements to this Court with jurisdiction over this Stipulated Judgment, and that it could not reasonably have been expected to avoid the event or circumstance, and which by exercise of due diligence has been unable to overcome the failure of performance.

28 ///

16 STIPULATED JUDGMENT FOR RESPONDENT AND DEFENDANT GREAT BASIN UNIFIED AIR POLLUTION CONTROL DISTRICT

la-1255083

#### **Stipulated Penalties** 15.

| 1  | 15. <u>Stipulated Penalties</u>                                                                             |  |
|----|-------------------------------------------------------------------------------------------------------------|--|
| 2  | A. The City shall be subject to notices of violation from the APCO and                                      |  |
| 3  | stipulated daily penalties for failure to meet dust control measure completion deadlines set forth          |  |
| 4  | in this Stipulated Judgment for the Phase 9/10 project (Paragraph 2.A), Contingency Measure                 |  |
| 5  | projects (Paragraph 3.E), and Transition Area projects (Paragraph 8.C), except as excused by a              |  |
| 6  | condition of Force Majeure as defined in Paragraph 14. The amount of the daily penalty for each             |  |
| 7  | missed deadline shall be determined by the following formula:                                               |  |
| 8  | Stipulated daily penalty ( $(day) = 10,000 - 4500 (A_C/A_R)$ ,                                              |  |
| 9  | where                                                                                                       |  |
| 10 | $A_C$ = Dust control area required by the APCO that is completed and                                        |  |
| 11 | compliant (square miles), and                                                                               |  |
| 12 | $A_R$ = Total dust control area required by the APCO (square miles).                                        |  |
| 13 | B. The City shall pay any stipulated daily penalties within 90 days of any                                  |  |
| 14 | notice of violation from the APCO for failure to meet these deadlines. The City shall not                   |  |
| 15 | challenge or oppose its duty to pay the stipulated daily penalty in any administrative or judicial          |  |
| 16 | forum, under any law, statute or legal theory whatsoever including H&S Section 42316(b).                    |  |
| 17 | C. This Paragraph 15 applies only to the failure to meet dust control measure                               |  |
| 18 | completion deadlines as set forth in Paragraphs 2.A, 3.E and 8.C and does not apply to any other            |  |
| 19 | notice of violation or enforcement of laws by the District or its APCO.                                     |  |
| 20 | 16. <u>Sacramento County Superior Court to Retain Jurisdiction</u>                                          |  |
| 21 | The Sacramento County Superior Court shall retain jurisdiction over the Stipulated                          |  |
| 22 | Judgment including the enforcement of its terms. Either Party to this Stipulated Judgment may               |  |
| 23 | file an <i>ex parte</i> application or noticed motion before this Court to show a violation of the terms of |  |
| 24 | this Stipulated Judgment and/or to enforce its terms. Before either Party files such a motion or            |  |
| 25 | application, they agree to meet and confer with the other Party at least seven days before the              |  |
| 26 | filing, either in person or by telephone, to attempt to resolve the dispute.                                |  |
| 27 | 17. <u>Final Resolution of Claims</u>                                                                       |  |
| 28 | This Stipulated Judgment is intended to be the full and final resolution of all claims and                  |  |
|    | Ia-1255083         17           STIPULATED JUDGMENT FOR RESPONDENT AND DEFENDANT                            |  |

causes of action raised in this action by the Parties, including those relating to this action, the 2011 SCRD, 2012 SCRD, 2013 SCRD and 2014 SCRD.

3

1

2

# 18. Additional Provisions

A. <u>Execution of Additional Documents</u>. Each of the Parties agrees to
promptly do such acts and execute such additional documents as might be necessary to carry out
the provisions and effectuate the purposes of this Stipulated Judgment.

B. <u>Authority</u>. Each person executing this Stipulated Judgment on behalf of an
agency or other entity represents that he or she has the full legal right, power and authority to
execute and deliver this Stipulated Judgment and to bind the Party for whom such individual is
signing, and to cause such Party to perform its obligations hereunder.

C. <u>Exclusive Remedy</u>. By executing this Stipulated Judgment, each of the
 Parties acknowledges and agrees that the rights and remedies provided in this Stipulated
 Judgment shall be the sole and exclusive rights and remedies surviving as between and among the
 Parties hereto relating to the subject matter of this Stipulated Judgment.

D. <u>No Reliance on Others</u>. No representations, oral or otherwise, express or implied, other than those contained herein have been made by any Party, or any officer, director, commissioner, agent, affiliate, attorney or employee thereof. By executing this Stipulated Judgment, each of the Parties warrants and represents that this Stipulated Judgment is made and entered into without reliance upon any statements or representations of any other Party, or in reliance upon any statements or representations made by any officers, directors, commissioners, agents, affiliates, insurer, attorneys or employees, of any other Party.

E. 22 Independent Investigation. Each of the Parties warrants and represents that 23 he, she or it has made its own independent investigation, in the manner deemed necessary and 24 appropriate by them, of the facts and circumstances surrounding this Stipulated Judgment and the 25 agreements contained herein, and that through such independent investigation, each Party has 26 satisfied itself that the execution of this Stipulated Judgment and entry into the agreements 27 contained herein is in his, her or its best interest and are in compliance with the law. Also, each 28 of the Parties warrants and represents that his, her or its independent investigation has included, la-1255083 18

STIPULATED JUDGMENT FOR RESPONDENT AND DEFENDANT GREAT BASIN UNIFIED AIR POLLUTION CONTROL DISTRICT but not been limited to, receipt of independent advice by legal counsel on the advisability of
 entering into this Stipulated Judgment and making the agreements contained herein, and that the
 Stipulated Judgment is in compliance with the law.

F. <u>Litigation Expenses</u>. Upon the entry of the Stipulated Judgment, neither
Party shall further seek an award from this Court of the costs of suit and attorneys' fees incurred
and/or accrued in connection with this lawsuit.

G. <u>Construction of Agreement</u>. Each of the Parties has cooperated in the
drafting and preparation of this Stipulated Judgment and, therefore, any construction of the intent
of the Parties or language hereof to be made by a court or arbitrator shall not be construed against
any of the Parties. This agreement shall be construed in accordance with the laws of the State of
California.

H. <u>Comprehension of Terms</u>. Each of the Parties warrants and represents that
he, she and it has read this Stipulated Judgment in full, consulted with their legal counsel
regarding its terms, fully understands each and every provision hereof, and agrees to be bound by
all of the terms and provisions set forth herein.

I. <u>Severability</u>. Any portion of this Stipulated Judgment found to be invalid,
 void or unenforceable shall be deemed severable from the remainder of this Stipulated Judgment
 and shall not invalidate the remainder of the paragraph in which it is located or the remainder of
 this Stipulated Judgment.

J. <u>Merger and Integration</u>. This Stipulated Judgment contains the full and entire agreement between and among the Parties with respect to the entire subject matter hereof and supersedes any and all prior or contemporaneous agreements and discussions, whether written or oral. Any and all prior or contemporaneous discussions, negotiations, writings, commitments and/or undertakings related hereto are merged therein.

K. <u>Amendment</u>. This Stipulated Judgment may be amended only by a written
 agreement signed by all Parties and approved by this Court.

L. <u>Counterparts</u>. This Agreement may be executed and delivered by facsimile
 or emailed in pdf format and in any number of counterparts, each of which shall be deemed an
 <u>la-1255083</u>
 <u>19</u>
 <u>STIPULATED JUDGMENT FOR RESPONDENT AND DEFENDANT</u>

GREAT BASIN UNIFIED AIR POLLUTION CONTROL DISTRICT

| 1 | original. |
|---|-----------|
| • | 00        |

| 2  | M. <u>Notice</u> . Any notice required or permitted to be given under the terms of                     |  |  |  |  |
|----|--------------------------------------------------------------------------------------------------------|--|--|--|--|
| 3  | this Stipulated Judgment shall be in writing and delivered by email and Overnight Mail. Notices        |  |  |  |  |
| 4  | shall be sent to the following persons:                                                                |  |  |  |  |
| 5  | To: Great Basin Unified Air Pollution Control District                                                 |  |  |  |  |
| 6  | Theodore D. Schade                                                                                     |  |  |  |  |
| 7  | Air Pollution Control Officer                                                                          |  |  |  |  |
| 8  | Great Basin Unified Air Pollution Control District                                                     |  |  |  |  |
| 9  | 157 Short Street                                                                                       |  |  |  |  |
| 10 | Bishop, CA 93514                                                                                       |  |  |  |  |
| 11 | Telephone: (760) 872-8211                                                                              |  |  |  |  |
| 12 | Email: tschade@gbuapcd.org                                                                             |  |  |  |  |
| 13 | With a copy to:                                                                                        |  |  |  |  |
| 14 | Peter Hsiao, Esq.                                                                                      |  |  |  |  |
| 15 | Morrison & Foerster LLP                                                                                |  |  |  |  |
| 16 | 707 Wilshire Boulevard. Suite 6000                                                                     |  |  |  |  |
| 17 | Los Angeles, CA 90017-3543                                                                             |  |  |  |  |
| 18 | Telephone: (213) 892-5200                                                                              |  |  |  |  |
| 19 | Email: phsiao@mofo.com                                                                                 |  |  |  |  |
| 20 |                                                                                                        |  |  |  |  |
| 21 | To: City of Los Angeles Department of Water and Power                                                  |  |  |  |  |
| 22 | Attention: Marcie L. Edwards, General Manager                                                          |  |  |  |  |
| 23 | City of Los Angeles Department of Water and Power                                                      |  |  |  |  |
| 24 | 111 North Hope Street, Room 1550                                                                       |  |  |  |  |
| 25 | Los Angeles, CA 90012-2607                                                                             |  |  |  |  |
| 26 | Telephone: (213) 367-1338                                                                              |  |  |  |  |
| 27 | E-mail: marcie.edwards@ladwp.com                                                                       |  |  |  |  |
| 28 | ///                                                                                                    |  |  |  |  |
|    | la-1255083 20                                                                                          |  |  |  |  |
|    | STIPULATED JUDGMENT FOR RESPONDENT AND DEFENDANT<br>GREAT BASIN UNIFIED AIR POLLUTION CONTROL DISTRICT |  |  |  |  |

| 1  | With copies to:                                                                                                                    |
|----|------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Edward J. Casey, Esq.                                                                                                              |
| 3  | Alston & Bird LLP                                                                                                                  |
| 4  | 333 South Hope Street, 16th Floor                                                                                                  |
| 5  | Los Angeles, CA 90071                                                                                                              |
| 6  | Telephone: (213) 576-1000                                                                                                          |
| 7  | E-mail: ed.casey@alston.com                                                                                                        |
| 8  | And                                                                                                                                |
| 9  | Julie Riley, Deputy City Attorney                                                                                                  |
| 10 | Los Angeles City Attorney's Office                                                                                                 |
| 11 | 111 North Hope Street, Suite 340                                                                                                   |
| 12 | Los Angeles, CA 90051                                                                                                              |
| 13 | Telephone: (213) 250-7357                                                                                                          |
| 14 | E-mail: julie.riley@ladwp.com                                                                                                      |
| 15 | Notice shall be deemed given as of the date of transmission of the notice.                                                         |
| 16 | Any Party may change its addressee(s) for notice by providing written notice of such                                               |
| 17 | change in accordance with the requirements of this paragraph of the Stipulated Judgment.                                           |
| 18 | ///                                                                                                                                |
| 19 | 111                                                                                                                                |
| 20 | ///                                                                                                                                |
| 21 | ///                                                                                                                                |
| 22 | ///                                                                                                                                |
| 23 | ///                                                                                                                                |
| 24 | ///                                                                                                                                |
| 25 | ///                                                                                                                                |
| 26 | ///                                                                                                                                |
| 27 | ///                                                                                                                                |
| 28 | ///                                                                                                                                |
|    | Ia-1255083     21       STIPULATED JUDGMENT FOR RESPONDENT AND DEFENDANT       CREAT RASIN UNUSURD AIR POLY UTION CONTROL DISTRICT |

THE UNDERSIGNED SIGNATORIES represent that they have all necessary 1 authority to agree and enter into this Stipulated Judgment on behalf of their respective 2 3 party. 4 **REVIEWED AND AGREED TO:** 2r. ember Dated: 12 2014 5 2014 Dated: 6 7 Theodore D. Schade Marcie L. Edwards General Manager, Los Angeles Department Air Pollution Control Officer 8 of Water and Power 9 The City of Los Angeles Great Basin Unified Air Pollution Control By and Through the District 10 Los Angeles Department of Water and Power 11 12 APPROVED AS TO FORM AND LEGALITY: Dated: 19 13 2014 Dated: 2014 14 15 Michael N. Feuer, City Attorney Peter Hsiao Julie C. Riley Morrison & Foerster, LLP 16 Deputy City Attorney Attorney for Respondent and Defendant 17 Attorney for Petitioner and Plaintiff People of the State of California and the The City of Los Angeles Great Basin Unified Air Pollution Control 18 By and Through the District Los Angeles Department of Water and 19 Power 20 Attachment A - Court Final Ruling and Order Attachment B – TwB2 Operations Protocol 21 Attachment C – TwB2 Monitoring Protocol 22 THIS STIPULATED JUDGMENT IS REVIEWED, APPROVED AND ENTERED AS THE 23 JUDGMENT OF THE COURT 24 25 Dated: Decembrer, 30 1,2014 26 27 Honorable Shelleyanne W. Chan 28 Sacramento County Superiol Court la-1255083 STIPULATED JUDGMENT FOR RESPONDENT AND DEFENDANT GREAT BASIN UNIFIED AIR POLLUTION CONTROL DISTRICT

# EXHIBIT A

. .

# SUPERIOR COURT OF CALIFORNIA

# COUNTY OF SACRAMENTO

| DATE:<br>JUDGE:                                                                                                                                                  | December 16, 2014<br>HON. SHELLEYANNE                                                                                                                                                                                     | W, L. CHANG                                                                                      | DEP. NO.:<br>CLERK:          | 24<br>E. HIGGINBOTHAM |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------|-----------------------|
| CITY OF LOS<br>Corporation, A<br>DEPARTMEN<br>Petitioner a<br>v.<br>CALIFORNIA<br>EXECUTIVE<br>RESOURCES<br>BASIN UNIFI<br>DISTRICT; at<br>Respond<br>CALIFORNIA | ANGELES, a California<br>ACTING BY AND THRC<br>(T OF WATER AND PO<br>nd Plaintiff,<br>AIR RESOURCES BO<br>OFFICER OF THE CAL<br>BOARD, in his official ca<br>ED AIR POLLUTION C<br>nd DOES 1-100,<br>ents and Defendants. | Municipal<br>DUGH ITS<br>WER,<br>ARD;<br>JFORNIA AIR<br>apacity, GREAT<br>ONTROL<br>IISSION; and | Case No. 34                  | -2013-80001451        |
| DOES 101-500<br>Real Par                                                                                                                                         | ),<br>ties in Interest.                                                                                                                                                                                                   |                                                                                                  |                              |                       |
| Nature of Proceedings:<br>RULING ON SUBMITTED MATTER AND ORDER:<br>PETITION FOR WRIT OF MANDATE                                                                  |                                                                                                                                                                                                                           |                                                                                                  | IATTER AND ORDER:<br>LANDATE |                       |

The Court issued a Tentative Ruling on September 25, 2014, in which it denied the Petition for Writ of Mandate. The parties appeared for oral argument on September 26, 2014, and were represented by counsel as stated on the record. After oral argument, the Court took the matter under submission. The Court rules as follows

The City of Los Angeles (City) petitions for a writ of mandate that (1) declares void the 2011 Supplemental Control Requirements Determination (2011 SCRD) issued by Respondent Great Basin Unified Air Pollution District (District), and (2) invalidates the decision of Respondent California Air Resources Board (CARB) affirming the 2011 SCRD. The Petition is **DENIED**.

# I. BACKGROUND

# a. Background Facts and Law

This litigation reflects the long-running dispute between the City and agencies such as Respondents, which have jurisdiction over air quality affected by the City's water diversion. The City has been drawing water from the Owens River for over 100 years.

Page - 1 - of 18

Attachment A to Stipulated Judgment

This diversion has dried the Owens Lake Bed, creating large volumes of dust, in particular, the pollutant  $PM_{10}$ .<sup>1</sup> (CARB OL A:006453.)<sup>2</sup>

The instant litigation arises from the District's issuance of an order (2011 SCRD) that requires the City to mitigate  $PM_{10}$  on an additional 2.86<sup>3</sup> square miles of the Owens Lakebed.

# i. Background Law

Before discussing the facts, the Court provides an overview of the pertinent law to explain the regulatory relationship between the City, the District, and CARB.

Under the federal Clean Air Act, the United States Environmental Protection Agency (EPA) is charged with identifying air pollutants and setting National Ambient Air Quality Standards (NAAQS), identifying areas that do not meet the NAAQS for criteria pollutants, and directing the creation of State Implementation Plans (SIPs) to attain the NAAQS for the pollutants. (See, First Amended Petition (FAP), ¶¶ 22-26; see also 42 U.S.C. § 7410.) CARB has the responsibility and authority to meet the Clean Air Act's SIP requirements through each of the State's 35 air pollution control districts. (FAP, ¶ 28.) The District is one such air pollution control district.<sup>4</sup> (FAP, ¶¶ 22-26.)

In 1987, the EPA found that the Owens Valley Planning Area (OVPA) (in which the Owens Lake and District are located) did not meet the NAAQS for  $PM_{10}$ , a designated criteria pollutant. (AR: 2g:1769; CARB OL A:006454.) In 1993, the EPA reclassified the OVPA as a "serious non-attainment area" for  $PM_{10}$ . (*Id.*) The District manages air quality in the OVPA through SIPs, which are submitted to and approved by "the State" (CARB) and then to the EPA. (*See* 42 U.S.C. § 7410.) The District regulates the  $PM_{10}$  emissions caused by the City's water diversion through SIPs, SCRD orders, and an agreement, as described later in the ruling.

In 1983, Health and Safety Code<sup>5</sup> section 42316 was enacted to resolve disputes between the City and District regarding water diversion and air quality. Section 42316 provides in pertinent part:

<sup>4</sup> The District is formed pursuant to Health and Safety Code sections 40000 et seq.

<sup>5</sup> Unless otherwise specified, all future references shall be to the Health and Safety Code.

Page - 2 - of 18

Attachment A to Stipulated Judgment

<sup>&</sup>lt;sup>1</sup> PM<sub>10</sub> refers to particulate matter 10 microns or less in diameter. (CARB OL A:006453.)

<sup>&</sup>lt;sup>2</sup> Citations to the administrative proceedings before CARB appear as "CARB OL A:\_\_\_\_." Other citations to the administrative record appear as "AR volume number, volume letter:bates number" (e.g., AR 2g:1789.)

<sup>&</sup>lt;sup>3</sup> Although the SCRD initially required the City to implement mitigation on 2.93 square miles, the District issued a revised SCRD reducing the new control area from 2.93 to 2.86 square miles. (CARL OL A: 6458.)

(a) The Great Basin Air Pollution Control District may require the City of Los Angeles to undertake reasonable measures, including studies, to mitigate the air quality impacts of its activities in the production, diversion, storage, or conveyance of water and may require the city to pay, on an annual basis, reasonable fees, based on an estimate of the actual costs to the district of its activities associated with the development of the mitigation measures and related air quality analysis with respect to those activities of the city. The mitigation measures shall not affect the right of the city to produce, divert, store, or convey water and, except for studies and monitoring activities, the mitigation measures may only be required or amended on the basis of substantial evidence establishing that water production, diversion, storage, or conveyance by the city causes or contributes to violations of state or federal ambient air quality standards.

(b) The city may appeal any measures or fees imposed by the district to the state board [CARB] within 30 days of the adoption of the measures or fees. [CARB], on at least 30 days' notice, shall conduct an independent hearing on the validity of the measures or reasonableness of the fees which are the subject of the appeal. The decision of [CARB] shall be in writing and shall be served on both the district and the city. Pending a decision by [CARB], the city shall not be required to comply with any measures which have been appealed. Either the district or the city may bring a judicial action to challenge a decision by [CARB] under this section. The action shall be brought pursuant to Section 1094.5 of the Code of Civil Procedure and shall be filed within 30 days of service of the decision of [CARB].... (Health & Saf. Code, 42316 (emphasis added).)

Thus, the District may require the City to undertake reasonable mitigation measures to mitigate the air quality impacts of diverting water, which must be supported by substantial evidence establishing that the City's water diversion causes the violations. Section 42316 also sets forth the process by which the City and District resolve disputes about the reasonableness of the mitigation measures. The City may appeal District orders to CARB. CARB then "conduct[s] an independent hearing on the validity of the measures." Either party may then file a petition for writ of mandate pursuant to Code of Civil Procedure, section 1094.5. (Health & Saf. Code, § 42316.)

The parties agree that Section 43216 governs this litigation.

# b. Procedural Background

The City implements dust suppression measures on approximately 43 square miles of the Owens Lake Bed. (CARB OL A:6454-6455.) The City implements these measures pursuant to Supplemental Control Requirements Determinations (SCRD) from the District that have been incorporated into various SIPs, and a 2006 Agreement between the City and District. (*Ibid*; *see also*, AR 2g:1769-1770.)

Page - 3 - of 18

Attachment A to Stipulated Judgment

Attachment A

In late 2006, the City and District entered into an Agreement to settle litigation in which the City challenged a SCRD issued by the District's Air Pollution Control Officer (APCO). (AR 2g:1769-1770.) The Court refers to this Agreement as the "2006 Agreement." Among other things, the City agreed to:

- Apply Dust Control Measures on additional areas of the Owens Lakebed, beyond the 29.8 square miles required by the 2003 SIP. (AR 2g:1770.)
- Work with the District to improve the current "Dust ID Program" used to monitor PM<sub>10</sub> emissions. (AR 2g:1774-1775.)
- Allow the APCO to "recommence" written SCRDs, under the "revisions to the 2003 SIP." Pertinent here, the SCRDs will use Dust ID Data collected after April 1, 2010, and shall be made once every calendar year. (AR 2g:1778.)
- Abide by a particular dispute resolution process if it did not agree to a SCRD . issued by the APCO. If the City and District dispute a SCRD, "the City may appeal future [SCRDs] to CARB under the provisions of... Section 42316....provided that the Parties expressly intend that this Agreement be the final resolution regarding existing disputes between the Parties that are the subject of this Agreement.....*[T]*he City stipulates and agrees that all of the provisions and determinations, including the measures and procedures, contained in the 2003 SIP, the provisions of this Agreement to be included in modifications to the 2003 SIP pursuant to this Agreement, and the [SCRD] dated April 4, 2006, which the City in good faith disputed, shall be deemed to be valid and reasonable, and that the City will not challenge those provisions or determinations by appeal under Section 42316 or in any other proceedings, including any other administrative or judicial forum. Subject to this Paragraph, the City may challenge any future [SCRD] under Section 42316; however any arguments or challenges must be based on data or information that do not currently exist, but that exist after the execution of this Agreement. (AR 2g:1779 (emphasis added).)

In 2008, the District issued order #080128-01 (2008 Order). The 2008 Order incorporated the 2006 Agreement and approved the 2008 SIP, which regulated the  $PM_{10}$  emissions caused by the City's water diversion. The 2008 Order has been approved by CARB and the EPA under the 2010 Coso Junction Maintenance Plan, and has not been challenged by the City. (See AR 2a:899-900; CARB OL A: 6457.)

The 2008 Order ordered the City to continue to implement certain PM<sub>10</sub> controls (Best Available Control Measures or BACMs) on 29.8 square miles of the Owens Lakebed, and then on other specified portions of the Lakebed for a total of 43.0 square miles of "Total Dust Control Area." (AR 3a:1815-1816.) The 2008 Order specified the BACM mitigation measures that could be used by the City: shallow flooding, managed vegetation, and gravel blanket.<sup>6</sup> (AR 3a:1820-1842.)

Attachment A to Stipulated Judgment

<sup>&</sup>lt;sup>6</sup> The 2008 Order also specified that "Moat and Row," an alternative mitigation measure, was not currently approved by the District. (AR 3a:1825-1825.)

The 2008 Order also provided that at least once a year, the District's APCO will make a written determination as to whether any areas, in addition to those required by the 2008 Order require additional mitigation to comply with the NAAQS for  $PM_{10}$  (AR 3a:1817.) The 2008 Order further provided that once the APCO issues such a determination, the City must implement the BACM mitigation and comply with the California Environmental Quality Act (CEQA) and secure any necessary permits to implement the mitigation. (AR 3a:1818.)

On August 1, 2011, the District APCO issued the 2011 SCRD. The 2011 SCRD orders the City to "implement, operate and maintain air pollution control measures on an additional 2.86 square miles" of the Owens Lake Bed. (AR 2a:906.) The 2011 SCRD states that the City may use any combination of the three approved BACM measures: shallow flooding, managed vegetation, or gravel. (Id.; CARB OL A 6457.)

The City appealed the 2011 SCRD to CARB pursuant to Section 42316. Following a June 15, 2012 administrative hearing, CARB issued a decision affirming the District's SCRD on November 19, 2012. (CARB OL A: 006451-006483.)

The City filed a petition for a writ of mandate in the Superior Court for Los Angeles County, which was then transferred to the Superior Court for Sacramento County. The City amended its petition to add claims for declaratory relief. In February 2014, the Court granted Respondents' motion for judgment on the pleadings as to each claim for declaratory relief. This ruling addresses the remaining writ causes of action.

# II. DISCUSSION

# a. Requests for Judicial Notice

On January 21, 2014, the City submitted a request for judicial notice (RJN) in support of its Reply Briefs. Because the RJN was unopposed by any party, the Court granted the City's request in its tentative ruling.

At the hearing, the District objected to the Court's ruling, because the exhibit attached to the RJN, a statement from Governor's Office "Declar[ing] a Drought State of Emergency," was not in the administrative record. The District had nine months to make this objection. Because it is untimely, the District's objection is **OVERRULED**. In any event, the Court's consideration of the City's Request for Judicial Notice does not alter the outcome of the ruling.

The District also asked the Court at the hearing to disregard other evidence cited by the City in its Reply Brief (to the District) that was stricken from the administrative record. These objections are **OVERRULED**, as they are untimely. In any event the citations do not alter the Court's ruling.

# Page - 5 - of 18

Attachment A to Stipulated Judgment

Attachment A
#### b. California State Lands Commission

Real Party in Interest California State Lands Commission (CSLC) objects to being named as a party, because it did not take any actions subject to mandate. This contention is inapposite. A real party in interest includes any person or entity whose interest will be directly affected by the proceeding, or anyone having a direct interest in the result, which is therefore entitled to notice of the proceedings. (Sonoma County Nuclear Free Zone v. Superior Court (1987) 189 Cal.App.3d 167, 173-174.) CSLC owns a portion of the Owens Lakebed upon which the City must implement mitigation measures. As its ownership interests could be affected, it is properly named as a Real Party in Interest.

CSLC clarified at the hearing that it did not object to being named a Real Party in Interest, but objected to the extent that the City was trying to seek mandate relief against it. The City replied that it is not seeking mandate relief against the CSLC, and this contention is apparent from the Petition.

#### c. Standard of Review

#### i. The Court Reviews CARB's Decision

As a preliminary matter, the Court rejects the City's argument that because it "appealed" the 2011 SCRD issued by the District, the Court must review the District's decision to issue the 2011 SCRD, not the CARB decision that affirmed it. The plain language of Section 42316 says otherwise: "Either the district or the city may bring a judicial action to challenge a decision by [CARB]" pursuant to Code of Civil Procedure section 1094.5. (Health & Saf. Code, § 42316, subd. (b).) This language indicates that the Court reviews *CARB's* decision.

The City argues that, by analogy, the Court may review the District's decision because Water Code sections 13320 and 13330 allow courts to review a regional water board's order, which is administratively appealable to the State Water Resources Control Board (State Board). The Court rejects this argument.

Unlike Section 42316, Water Code sections 13330 and 13320 make express reference to the reviewability of regional board decisions for which the State Board denies review. (Water Code, § 13330, subd. (b).) Additionally, the California Supreme Court has interpreted these statutes to reflect that "decisions and orders of the [regional board], including the issuance and renewal of NPDES permits, are reviewable by administrative appeal to the State Water Board, and then by petition for administrative mandamus in the superior court." (*Voices of the Wetlands v. State Water Resources Control Board* (2011) 52 Cal.4<sup>th</sup> 499, 516.) In contrast to these Water Code provisions, no published appellate authority has construed Section 42316. Thus, procedurally, these statutes are inapposite as Petitioner is not seeking review of a decision by a regional board and this is not a case where the State Board has denied review.

#### Page - 6 - of 18

The City also contends that the Court may review the District's decision, because CARB's hearing was an appellate hearing and not a true *de novo* hearing. However, Section 42316 provides that the City may appeal any mitigation measures or fees imposed by the District to CARB, which shall conduct an "independent hearing on the validity of the measures." (Health & Saf. Code, § 42316, subd. (b).) The statute expressly provides that the hearing by CARB is *de novo*.

Accordingly, the Court reviews CARB's decision.

#### ii. Review of CARB's Decision

The Court reviews CARB's decision to determine "whether the respondent has proceeded without, or in excess of, jurisdiction; whether there was a fair trial; and <u>whether there was any prejudicial abuse of discretion</u>. Abuse of discretion is established if the respondent has not proceeded in the manner required by law, the order or decision is not supported by the findings, or the findings are not supported by the evidence." (Code Civ. Proc., § 1094.5, subd. (b) (emphasis added).) "[A]buse of discretion is established if the court determines that the findings are not supported by substantial evidence in the light of the whole record." (*Ibid*, § 1094.5, subd. (c).)

The parties agree that the standard of review for CARB's factual determinations,<sup>7</sup> e.g., whether the mitigation measures in the 2011 SCRD are "valid," is whether they are supported by substantial evidence. (*Sierra Club v. California Coastal Comm'n* (1993) 19 Cal.App.4th 547, 556-557; Health & Saf. Code, § 42316, subd. (b).)

CARB's decision is presumed to be supported by substantial evidence, and Petitioner bears the burden of showing that there is no substantial evidence to support the findings of the agency. (Ross v. California Coastal Comm'n (2011) 199 Cal.App.4<sup>th</sup> 900, 921.) Petitioner argues that the Court must "weigh the evidence." This is incorrect. In reviewing CARB's decision, the Court examines the entire administrative record and considers all relevant evidence, including evidence that detracts from the decision. (*Ibid.*) Although this task may involve some weighing to fairly estimate the worth of the evidence, that limited weighing does not constitute independent review where the Court substitutes its own findings and inferences for the agency's. (*Id.* at p. 922.) Rather, it is for CARB to weigh the evidence, and the Court may reverse CARB's decision only if, based on the evidence, a reasonable person could not have reached the conclusion CARB reached. (*Ibid.*)

The parties agree that the Court reviews *de novo* whether CARB has complied with procedural requirements (*see Citizens for East Shore Parks v. California State Lands Comm 'n.* (2011) 202 Cal.App.4<sup>th</sup> 549, 557) and issues of law (*see Pasternak v. Boutris* (2002) 99 Cal.App.4<sup>th</sup> 907, 918).

Page - 7 - of 18

<sup>&</sup>lt;sup>7</sup> Such factual determinations include disagreements regarding the methodology used for assessing environmental impacts, and reliability or accuracy of data upon which the agency relies. (*North Coast Rivers Alliance v. Marin Mun. Water Distr.* (2013) 216 Cal.App.4<sup>th</sup> 614, 642-643.)

#### d. The City Has Failed to Show that CARB Did Not Follow Proper Procedures in Conducting the Hearing

The City argues that CARB abused its discretion by failing to comply with procedures required by law because CARB did not conduct a true "independent" hearing. Namely, the City argues that the CARB Executive Officer admitted some evidence but did not consider the City's. The City has shown no prejudicial abuse of discretion.

The Executive Officer conducting the hearing on behalf of CARB<sup>8</sup> declined to conduct a "new unlimited evidentiary hearing." (CARB OL A:006458-6459.) He interpreted Section 42316's "independent hearing" requirement to mean that he would apply his independent judgment in reviewing the 2011 SCRD. He also decided to limit the evidence to the "administrative record" before the District, plus any additional evidence admitted to augment the record, and rule *do novo* on this evidence. (*Ibid.*) The Executive Officer outlined these rules in January 17, 2012 First Procedural Order issued at the outset of the administrative process, and after argument and briefing from the parties. (CARB OL A:000915, et seq.)

Specifically, the Executive Officer issued a procedural order permitting the administrative record to be augmented only if (1) the evidence was presented to and accepted by the District but was mistakenly omitted from the record, (2) is relevant, but could not, with the exercise of reasonable diligence, have been presented to the District before the 2011 SCRD issued, or (3) the parties stipulated to admit the evidence. (CARB, OL A:000963.)

The City contends that the Executive Officer denied the City's motions and requests to introduce new evidence into the record. The City has failed to demonstrate how these alleged errors were prejudicial, notably, by not describing what the evidence was and how its omission assisted CARB or how its admission would have assisted the City.

The City argues that CARB erroneously disallowed the City from presenting unidentified new evidence—first on March 7, 2012, and then on November 19, 2012 when the City submitted some "declarations and supporting documents"<sup>9</sup> with its Opening and Reply briefs in the CARB hearing. (CARB OL A:006459-6460.) The improper exclusion of competent and material evidence may constitute a prejudicial abuse of discretion, particularly if it relates to a defense. (*King v. Board of Med. Examiners* (1944) 65 Cal.App.2d 644, 649.) Here, the City has not even identified what the evidence is and how it is competent and material. Accordingly, the City has not shown that the Executive Officer prejudicially abused his discretion.

Second, the City argues that CARB "re-ran" technical data and allowed its staff to testify as witnesses, but did not allow the City to cross-examine those staff. CARB disputes the accuracy of these statements. The City has not shown that CARB prejudicially abused its

Page - 8 - of 18

<sup>&</sup>lt;sup>8</sup> For the sake of convenience, this ruling may refer to the acts of the Executive Officer as "CARB."

<sup>&</sup>lt;sup>9</sup> The City does not further explain the nature of the evidence it sought to introduce.

discretion. Beyond these vague statements, the City does not describe the technical data that CARB "re-ran" or the statements of staff at the hearing, and explain how they were relevant or critical to the decision.

The City cites to one page of a CARB staff report prepared for the CARB hearing. In the report, staff note that the City argues that the District did not accurately account for background concentrations and emissions for "Lone Violator" and "Watch Areas," because on certain "exceedance days," the District did not account for attributing the exceedances from other sources. CARB staff examined the exceedance days cited by the City and concluded that even if those days were omitted, there were a "sufficient number of other [violation] days in the modeling output records to qualify for control in each [2011 SCRD] area." (CARB OL A: 5814.)

The staff report rather notes that, even assuming that specific dates mentioned by the City were removed, it would not alter the District's findings. The City argues in a conclusory fashion that it is prejudiced because it could not respond to this conclusion. However, even if the City could "respond" to this conclusion, it would not alter the conclusions regarding the "Lone Violator" and "Watch Areas." (Id.) The City has shown no prejudice.

The City next avers that CARB improperly allowed three additional documents not before the District—the District's quality assurance plan for another pollutant; a maintenance plan for a different planning area; and an abatement order to the City. (AR 3b:1964, 5:3629, 4089.) The Court disposes of this argument on two grounds.

CARB responds that Petitioner made no attempt during the hearing to exclude the documents it now objects to. Accordingly, the City did not exhaust its administrative remedies for this argument.

Moreover, the City does not specify how the admission of these documents was improper or objectionable. First, the City does not identify how the documents were relevant to CARB's decision and to what extent the Executive Officer relied on them. Additionally, Petitioner has not established that the admission of this evidence was in error, namely that the Executive Officer admitted this evidence after a successful motion to augment the administrative record, e.g., he found that it was relevant but was omitted from the administrative record.

Generally, admission of improper evidence is generally not a prejudicial abuse of discretion if there is sufficient competent evidence to support the agency's decision. (Southern Cal. Jockey Club, Inc. v. California Horse Racing Bd. (1950) 36 Cal.2d 167, 175; Carden v. Board of Prof'l Eng'rs. (1985) 174 Cal.App.3d 736, 744.) As the City fails to identify how the admitted evidence was improper, it cannot show a prejudicial abuse of discretion.

#### Page - 9 - of 18

Attachment A to Stipulated Judgment

. -

#### e. The City's CEQA Challenge is Barred

The City contends that the 2011 SCRD Order (as affirmed by CARB) violates CEQA because it requires the City to implement one of three particular mitigation measures. (CARB OL A:6478-6479.) The gravamen of the City's argument is that it believes that the 2011 SCRD will require it to use additional water to mitigate PM<sub>10</sub>, emissions, which will create additional environmental impacts that the City must evaluate under CEQA.

The City argues that requiring additional  $PM_{10}$  mitigation is a CEQA "project," but by restricting the mitigation measures, the District has precluded the City, as lead agency, from fully considering the environmental impacts of the 2011 SCRD, considering other alternatives and mitigation measures, and deciding whether to adopt a Statement of Overriding Considerations. The City also argues that the 2011 SCRD violates CEQA because implementing it will likely impact cultural resources in the area.

CARB found no substantial evidence that the 2011 SCRD violates CEQA. (CARB OL A:6480.) Having reviewed the administrative record, the Court agrees.

The City's CEQA challenge is based on its complaint that the 2011 SCRD restricts the City's choice of  $PM_{10}$  mitigation. But the 2008 Order already outlined the types of permissible mitigation measures, which the City did not challenge. In fact, the City agreed not to do so in the 2006 Agreement with the District.

The 2011 SCRD requires the City to use one of three mitigation measures to mitigate dust on an additional 2.86 square miles of the Owens Lakebed: shallow flooding, managed vegetation, or gravel. The District issued the 2011 SCRD pursuant to the 2008 Order, which was approved by CARB and the EPA in the Coso Junction Maintenance Plan, and not challenged by the City. (AR 2a:899-900.) These mitigation measures are also set forth in the District's most recent (2008) SIP, which is confirmed by the District's 2008 Order. The 2008 Order also reflects that the City will assume the role of CEQA lead agency, and prepare any documentation, related to additional mitigation.

Respondents observe that City stipulated in the 2006 Agreement "not to challenge (the 2008 Order) under CEQA to the extent the Order is consistent with [the 2006 Agreement]." This 2006 Stipulation is incorporated into the 2008 Order. (AR 2h:233, para. G.)

The City does not meaningfully dispute these contentions—that it now brings a CEQA challenge to mitigation measures set forth in a 2008 Order which formed the authority for the 2011 SCRD. Moreover, the City does not assert that it may bring a CEQA action now because the mitigation measures reflected in the 2011 SCRD and set forth in the 2008 Order are somehow inconsistent with the provisions of the 2006 Agreement. Rather, the City appears to argue that its 2006 Agreement was invalid: it could not stipulate to forego a CEQA challenge because the public has a right to be informed of decisions under the CEQA process. However, the City should have asserted this in a

Page - 10 - of 18

timely action to challenge the mitigation measures set forth in the 2008 Order, which it failed to do.

The mitigation measures the City seeks to challenge are contained in the 2008 Order. The statute of limitations for a CEQA action is "within 180 days from the date of the public agency's decision to carry out or approve the project." (Pub. Resources Code, § 21167, subd. (a).) Accordingly, the statute of limitations bars the City from asserting a CEQA challenge to particular mitigation measures that were the subject of the 2008 Order.

#### f. The City Has Not Shown that CARB's Factual Decisions are Unsupported by Substantial Evidence

As a preliminary matter, the Court addresses the City's contention that the 2008 Order (incorporating the 2006 Agreement and approving the 2008 SIP) does not bar the City's challenge to the SCRD. The City argues that by entering the 2006 Agreement, it did not waive its statutory right to challenge the mitigation measures in the SCRD, because Section 43216 is a public interest statute.

"Civil Code section 3513 provides: 'Any one may waive the advantage of a law intended solely for his benefit. But a law established for a public reason cannot be contravened by a private agreement.' Nonetheless, statutory benefit may be waived if (1) the statute does not prohibit waiver, (2) the statute's public purpose is incidental to its primary purpose, and (3) the waiver does not seriously undermine any public purpose the statute was designed to serve." (*Lanigan v. City of Los Angeles* (2011) 199 Cal.App.4<sup>th</sup> 1020, 1030.)

The City argues that because it is asserting the violation of "important public rights" (contained in either Section 43216 or the California Constitution), the City, as a public agency, apparently could not enter into the 2006 Agreement, which the 2008 Order incorporated. Were the Court to accept the City's argument, the City could negate any past consent to procedures and methodologies governing issuance future SCRDs. Moreover, the City does not meaningfully argue that any waiver in the 2006 Agreement "seriously undermines any public purpose the statute (or any law) was designed to serve."

The Court concludes that the City's entry into the 2006 Agreement does not allow the City to then challenge procedures and methodologies to which it previously agreed. Additionally, the 2008 Order functions as an independent order barring the City's challenges, regardless of whether the Court finds that the City did not waive any statutory or constitutional claims under the 2006 Agreement.

However, other grounds exist to defeat the City's specific challenges to the 2011 SCRD, which the Court will address.

The City argues the 2011 SCRD is unsupported by "substantial evidence establishing" that the City's water diversion causes the  $PM_{10}$ , emissions for which the City must impose additional mitigation. (Health & Saf. Code, § 42316.) CARB decided that the

#### Page - 11 - of 18

mitigation measures in the 2011 SCRD were supported by substantial evidence. The Court affirms CARB's decision, and discusses each "substantial evidence" argument.

#### i. Shoreline

.

The 2011 SCRD defines the Owens lakebed "regulatory shoreline" at 3,600 feet above sea level (fasl), "below which the City is responsible for air pollution emissions and above which air quality standards are expected to be maintained." (AR 2a:901-902.)

The City argues that the 2011 SCRD's selection of the 3,600 fasl level is not supported by substantial evidence, because, according to modeling done by the Desert Research Institute (DRI), the shoreline would have fluctuated during the 100 years in which the City has been diverting water. The City argues that the regulatory shoreline should be below 3,600 fasl.

The City stipulated in the 2006 Agreement not to challenge future SCRDs, unless the challenges were based on data that existed after the time of the 2006 Agreement. The Executive Officer found that the location of the "historic" or "regulatory" shoreline was data that existed at or before the time of the 2006 Agreement. Additionally, because the studies cited to by the City in support of its argument all predated the 2006 Agreement, the City's challenge was barred. (CARB OL A:006466.)

The SCRD procedure contained in the 2008 Order,<sup>10</sup> attachment B, allows the APCO to regulate the City if the monitored or modeled emissions exceed the NAAQS caused by emissions occurring "at or above the historic shoreline." (AR 1f:6; CARB OL A:006465.) The SCRD procedure definitions define a "shoreline monitor" as one located at the 3,600 feet elevation (historic shoreline) contour" or one in the "non-attainment area." (AR 1f:5.) Moreover, the 2008 Order and District Rule 401.D respectively specify that the historic shoreline is 3,600 fasl, and that 3,600 fasl is the "control to" elevation. (AR 2h:356, 2a:974.)

Thus, the Executive Officer did not abuse his discretion in concluding that the City's challenge to the regulatory shoreline is barred.

The City claims that it may revive this argument, because Section 42316 requires that components of the 2011 SCRD be supported by substantial evidence. Even if the Court accepts this argument, however, the City's citation to another modeling report, indicating that the lake levels could have fluctuated over time, does not establish that the District's choice of a 3,600 fasl "regulatory" shoreline is somehow unsupported by substantial evidence.

#### ii. Modeling and Methods

In the CARB hearing, the City asserted that the modeling procedure used by the District to identify source areas for mitigation is flawed for several reasons, and does not

Page - 12 - of 18

<sup>&</sup>lt;sup>10</sup> The Executive Officer refers to the 2008 Order as "Board Order 080128-01."

constitute substantial evidence establishing that the City caused the  $PM_{10}$  emissions. The Court considers and rejects each argument.

#### 1. Recommendation of Expert Panel

The City first contends that the 2011 SCRD Order is invalid because the District did not adequately implement the recommendations of agreed-on technical experts (Expert Panel) with regard to measurement and monitoring of the PM<sub>10</sub> emissions (e.g., DUST ID program).

As part of the 2006 Agreement, the City and District stipulated that they would select an Expert Panel to make recommendations to the DUST ID program, and that the District would "implement all mutually-agreeable changes to the DUST ID program." (AR 2g:1774.) The City faults the District for not making sufficient changes to the DUST ID program after the Expert Panel concluded that some components of the program should be improved. The City contends that the District adopted "a number of," but not all of, the Expert Panel's recommendations.

However, by the City's own admission, the Settlement Agreement required the District to implement all "mutually-agreeable" changes. Accordingly, the District's decision not make *all* changes recommended by the Expert Panel does not, in and of itself render the 2011 SCRD invalid.

The City argues that the 2006 Agreement is irrelevant, because under Section 42316, "substantial evidence" must show that the City's water diversion causes  $PM_{10}$  emissions, and the Executive Officer should not be permitted to "disregard" findings of the Expert Panel that the DUST ID program needs improvement.

However, the Executive Officer *did* consider the Expert Panel's recommendations. He found that it was impossible for the District to adopt all recommendations, because adoption of all of the Expert Panel recommendations required both the City and District's agreement, and that the City withheld its agreement by not meeting with the District to discuss implementing those recommendations. (CARB OL A:006470,)

The City does not appear to dispute this, but also argues that it offered its own solution to the potential problems caused by the DUST ID program, which the District rejected.

The Executive Officer further found that despite the City's lack of cooperation, the District implemented a "majority" of the Expert Panel's recommendations, that the record had substantial evidence to support the District's modeling approach, and even if the District could have, but did not, adopt all of the Expert Panel's recommendations, the SCRD was not invalid, as the City cited no substantial evidence that it tried to change the modeling protocols. (CARL OL A:006470.)

#### Page - 13 - of 18

The Court has reviewed the record and concluded that the Expert Panel's statements do not show that the 2011 SCRD and decision affirming it were unsupported by substantial evidence..

The City cites its own technical data contending that the DUST ID model overpredicts  $PM_{10}$  concentrations by a factor of two and is inaccurate, and argues that the District improperly disregarded the recommendations of the Expert Panel. The District responds that the DUST ID program performs well based on comparisons to other air quality models, and that the DUST ID program's results are appropriate because they are conservative to protect public health and do not underestimate  $PM_{10}$  emissions.

While the City has shown that there may be a "battle of the experts" regarding the DUST ID program and that reasonable minds may differ, this is not a basis for finding that the 2011 SCRD was unsupported by substantial evidence to the extent that the District's mitigation measures were at variance with any recommendations of the Expert Panel. (Association of Irritated Residents v. County of Madera (2003) 107 Cal.App.4<sup>th</sup> 1383, 1397 (noting that "[w]hen the evidence on an issue conflicts, the decisionmaker is 'permitted to give more weight to some of the evidence and to favor the opinions and estimates of some of the experts over the others.'") (citation omitted).)

#### g. EPA Recommendations

The City also argues that CARB's decision affirming the 2011 SCRD is invalid because the District did not follow EPA rules and regulations in collecting the monitoring data that is the basis for the SCRD. The Court rejects these arguments.

#### i. QAPP

The City first argues that the District did not collect certain data pursuant to an EPAapproved Quality Assurance Project Plan (QAPP) to ensure that the District's methodologies are trustworthy. The District concedes that it used a "CARB-approved" QAPP, which it contends is sufficient. The City argues that this method is infirm, and renders the 2011 SCRD defective.

The Executive Officer found that the District was not required to operate under an EPAapproved QAPP. (CARB OL A:006473 (citing AR 5:3874, 4373).) However, other than challenging the QAPP-collected data on the basis that the CARB's approval is insufficient, the City does not identify the (1) specific data gathered under the QAPP, (2) its relationship to the SCRD, and (3) how the methodology or data is invalid. Additionally, the City cites no case law where particular data, *that may otherwise be accurate*, renders an agency enforcement order unsupported by substantial evidence because the EPA did not approve it. The City has not met its burden of showing that CARB's decision on this issue is unsupported by substantial evidence.

#### Page - 14 - of 18

#### ii. CALPUFF

The City contends that the District improperly uses "CALPUFF," an "alternative" modeling tool that has not been approved by the EPA. The City argues that although CALPUFF is approved as a long-range dispersion model, it is not approved by the EPA for "near-field" assessments, that are used here.

The District contends that the EPA has approved CALPUFF for the SCRD modeling process. The Executive Officer found that CARB and the EPA approved the use of CALPUFF. Specifically, he found that the EPA approved the CALPUFF modeling system for the SCRD process when it approved the 2010 Coso Junction Management Plan, and the 2008 Order (#08128-01). (CARB OL A:06468 (citing AR 2f:4994; AR 5:4371.)

The Court rejects the City's claims that CARB's decision is unsupported by substantial evidence for the same reasons as discussed above. Other than challenging the CALPUFF-collected data on the basis that the CARB's approval is insufficient, the City does not identify the (1) specific data gathered by CALPUFF, and why it is "near-field" rather than "long range", (2) its relationship to the SCRD, and (3) how the methodology or data is invalid. Additionally, the City cites no case law where particular data, *that may otherwise be accurate*, renders an agency enforcement order unsupported by substantial evidence because the EPA did not approve it.

#### iii. Calibration of Data

The City also argues that the District improperly calibrates data from the DUST ID model by comparing model estimates and the actual  $PM_{10}$  measurements, a practice that is disapproved by the EPA. The City contends that the District "adjusts" the modeled Kfactors to "force agreement" between the modeled K-factors and the actual observed  $PM_{10}$  concentrations at the shoreline. According to the City, this is improper "calibration."

The District responds that it does not "calibrate" DUST ID data with its own results. Rather, the District argues that it compares a small amount of paired predictions with actual emissions, to develop a K-Factor value for different areas and periods, to capture seasonal variations on the Owens Lakebed that cannot be predicted by independent means.

The Executive Officer found that the DUST ID protocol was not improper calibration, because it did not "change" the inner workings of the model, but used the model with the actual values to "improve" emissions estimates. (CARB OL A:006488.)

The Court defers to the technical expertise of CARB in determining that the District did not engage in "calibration" that is disapproved of by the EPA. Petitioner has not shown that CARB's decision was unsupported by substantial evidence.

Page - 15 - of 18

Attachment A to Stipulated Judgment

Attachment A

#### iv. Other Federal Regulations

The City contends that the District did not comply with other federal regulations that require the District to account for  $PM_{10}$  emissions from other sources. Thus, the City argues that some amount of  $PM_{10}$  emissions are wrongly attributed to its water diversion. The City avers that off-lake sources cause a background level of dust that renders inaccurate the number of exceedances for a measured air quality level. The City also argues that the District did not properly consider the EPA's "exceptional events" policy.

The Executive Officer reviewed these arguments raised by the City, and found that, in this case, the identified federal regulations do not apply. (CARB OL A:006473-6477.) Additionally, the City has not attempted to quantify the amount of  $PM_{10}$  emissions attributable to other sources. Rather, the City appears to argue that if *any*  $PM_{10}$  emissions could come from other sources, this renders the 2011 SCRD order invalid and unsupported by substantial evidence. The City has not shown that CARB's decision is invalid in this regard.

#### h. Watch Areas

The City also contests the 2011 SCRD's order that the City to prepare 30 percent designs for dust controls on an additional 1.87 square miles, identified as "Watch Areas." (AR 2:a906; 4g:3544-3545.) The City argues that there is no legal authority for this requirement, because Section 42316 requires that mitigation measures must be supported with substantial evidence. The City argues that the District has *not* determined that Watch Areas cause any NAAQS PM<sub>10</sub> violation.

However, the Executive Officer found that the District's use of "Watch Areas" is supported by legal authority—specifically the 2008 Order.

Section 11 of the 2008 Order, titled "CRITERIA FOR DETERMINING THE NEED FOR ADDITIONAL PM10 CONTROLS" states that the APCO will use the criteria, methods, and procedures in the SCRD procedure, incorporated as Attachment B and the "2008 Owens Lake Dust Source Identification Program Protocol" in Attachment C. (CARB OL A:006464; AR 2:h193).)

The SCRD Procedure states that if the DUST ID model predicts that emissions from a source will cause shoreline  $PM_{10}$  concentrations at or greater than 100 µg/m<sup>3</sup> but less than 150 µg/m<sup>3</sup>, with the inclusion of 20 µg/m<sup>3</sup> background concentration, the APCO will direct the City to choose the mitigation it wishes to implement in the identified area. The City must then develop a detailed "scope of work" for the "identified potential source areas." The District may deploy monitors upwind and downwind of the area, and will notify the City if "additional controls" are needed. (CARB PL A:006464; AR 2h:271-274.) Although the SCRD Procedure in the 2008 Order does not use the term "Watch Area," the Executive Officer found that "Watch Area" criteria and requirements in the 2011 SCRD match those in the 2008 Order.

Page - 16 - of 18

Attachment A to Stipulated Judgment

Attachment A

Accordingly, by designating a "Watch Area," the 2011 SCRD implicitly found that DUST ID model predicted that emissions from a source will cause shoreline  $PM_{10}$  concentrations within at or greater than 110 µg/m<sup>3</sup> but less than 150 µg/m<sup>3</sup>, with the inclusion of 20 µg/m<sup>3</sup> background concentration. The City does not explain how this finding is not substantial evidence supporting the Order that the city prepare 30 percent design for dust controls on the "Watch Areas."

Accordingly, the City has not shown that CARB's decision is unsupported by substantial evidence.

#### i. The City's Constitutional Claim

The City contends that the 2011 SCRD (1) permits a "waste" of water prohibited by the California Constitution, and (2) interferes with its right to divert water under Section 42316. The Court rejects these arguments.

Although the City raised them in a slightly different context, the Executive Officer considered and rejected those claims. The Court agrees with CARB's decision.

First, the City agreed that the specific types of mitigation measures issued by the 2011 SCRD (shallow flooding, managed vegetation, gravel blanket) were valid and reasonable, and it agreed not to challenge them.

Further, the 2011 SCRD does allow the use of a mitigation measure (gravel blanket) that appears to require little or no water. The City discounts this mitigation measure as illusory. It observes that two of the three  $PM_{10}$  mitigation measures require it to use substantial amounts of water, and that CSLC, which owns the land upon which the City must implement mitigation, has opposed and effectively prevented the City from choosing the gravel blanket mitigation measure. Thus, the City argues that the 2011 SCRD will require it to use large amounts of water in violation of the California Constitution, and its right to divert water.

The Executive Officer found that this claim was speculative, because the City had not cited any substantial evidence where it communicated with CSLC about the issuance of leases (for land CSLC owns) for implementing the 2011 SCRD. The City cites other evidence that CSLC has opposed the gravel blanket mitigation measure.

The Court cannot conclude that the 2011 SCRD Order which allows a choice of mitigation measures,<sup>11</sup> combined with past statements of CSLC opposing gravel mitigation on *other* areas of the Owens Lakebed, means that the City will necessarily use huge quantities of water for mitigation.

Page - 17 - of 18

<sup>&</sup>lt;sup>11</sup> Additionally, there may be a water use difference between the two mitigation measures that require water: shallow flooding and managed vegetation. The City does not explain this difference but asks the Court to assume that any use of water is necessarily wasteful.

Further, even if the City does use some water, the City has failed to demonstrate that such water use is a prohibited "waste" or constitutes "interference" with its ability to divert water.

#### III. DISPOSITION

· · ·

The petition for writ of mandate is DENIED.

Counsel for Respondent District or CARB shall prepare a formal order and judgment, incorporating this ruling as an exhibit; submit it to all parties for approval as to form; and thereafter submit it to the Court for signature and entry of judgment in accordance with California Rules of Court, rule 3.1312.

Date: December 16, 2014

Shelleyanne W.L. Chang

Judge of the Superior Court of Californ County of Sacramento

Page - 18 - of 18

#### **Declaration of Mailing**

I hereby certify that I am not a party to the within action and that I deposited a copy of this document in sealed envelopes with first class postage prepaid, addressed to each party or the attorney of record in the U.S. Mail at 720 Ninth Street, Sacramento, California.

Dated: December 17, 2014

· · · ·

E. Higginbotham, Deputy Clerk /s/ E. Higginbotham

Michael Neville Bryant Cannon Office of the Attorney General 455 Golden Gate, Ste. 11000 San Francisco, CA 94102

Susan Austin Office of the Attorney General P.O. Box 70550 Oakland, CA 94612

Peter Hsiao Morrison & Foerster, LLP 707 Wilshire Blvd. Los Angeles, CA 90017

Edward Casey Alston & Bird, LLP 333 South Hope Street Sixteenth Floor Los Angeles, CA 90071

Julie Conboy Riley Deputy City Attorney P.O. Box 51111, Room 340 Los Angeles, CA 90051

# EXHIBIT B

# Attachment B to the Stipulated Judgment Protocol for Operation and Maintenance of Owens Lake Tillage with BACM Backup

#### **1.0 SITE SELECTION, OPERATION, AND MAINTENANCE**

This report summarizes the methods used by the Los Angeles Department of Water and Power (LADWP) to select, operate, and maintain tilled areas with BACM backup (TwB2) on Owens Lake.

#### **1.1 Site Selection**

TwB2 sites will be selected based on the following criteria, shown in order of priority:

- 1. Sites within existing shallow flood (SF) infrastructure
- 2. Sites with predominantly deep fine-textured soils
- 3. Sites with other than predominantly deep fine-textured soils

4. Sites outside of existing SF infrastructure as allowed by GBUAPCD with predominantly deep fine-textured soils, provided an alternate source of water is in place to provide water for soil wetting on an as-needed basis.

5. Sites outside of existing SF infrastructure with other than deep fine-textured soils, provided an alternate source of water is in place to provide water for soil wetting on an asneeded basis.

#### 1.2 Site Operation

Site operations encompass selection of the tillage method, activities to minimize emissions during the tilling operations, and the periodic inspections to ensure that the required site roughness is being maintained, particularly after large wind, rain, or flood events, and to focus maintenance activities where these are indicated. Each activity is discussed below.

#### 1.2.1 Selection of Tillage Method

The method of tillage will be determined predominantly by soil type, texture, and moisture content. Preliminary methods are listed below. Final methods will be determined in the field by LADWP Operations, who will at that point understand site-specific constraints, and employ the tool(s) that confer the greatest, most sustainable degree of roughness.

1. If the soils are too wet for other implements, an excavator (possibly on mats) will be used.

2. If the soils are too wet for other implements but dry enough to use a switch plow, a switch plow will be used.

3. If the soils are also dry enough to run a Towner disk, it may be used as an option to the switch plow.

4. If soils are dry enough to operate a bull plow, a bull plow will be operated after switch plowing or disking.

5. The direction of the final operation will be generally east-west, in a gently curving/wave pattern, to the extent practicable.

6. If roughness conferred by other tools is not sufficiently durable, a Sandfighter or equivalent may be used to rapidly restore roughness.

#### **1.2.2** Minimizing Emissions During Tilling Operations

Primary tillage such as that practiced and planned at Owens Lake generally does not generate excessive emissions because the objective is to avoid soil pulverization. The main approach to minimizing emissions is to minimize the number of passes across a field to achieve the required roughness.

A secondary protection from excessive emissions is soil moisture. Most soils on Owens Lake are naturally moist, further limiting potential emissions. When soils are re-tilled, LADWP will endeavor to take advantage of natural moisture (precipitation) to perform needed maintenance events.

#### 1.2.3 Periodic Site Inspection

LADWP will inspect all tillage sites on a weekly basis to ensure that there are no visible dust plumes, and that the required site roughness is being maintained. LADWP's site inspection program will consist of a combination of drone inspection, periodic LiDAR flights to quantify site roughness, and ground-truth observations by human inspectors as determined useful by LADWP. Each of these elements is discussed below.

#### 1.2.3.1 Drone Observation

Drones will provide observations because of their ability to travel quickly over large areas of rough terrain, recording videos as they go with GPS waypoint coordinates. If any areas of reduced roughness are observed, which would be most likely after a high wind event, rainstorm, or other type of inundation (e.g., berm breach, flash flooding), the drone would be used to GPS the boundaries of the area for later mapping and maintenance decision-making.

Attachment B to Stipulated Judgment, Page 2

Attachment A

During their weekly flights, the drones will record the following parameters:

Roughness relative to goal and/or historic levels

. . . . .

- Location and scale of any "blowouts," where roughness has been locally diminished by deposition and/or erosion.
- Evidence of excessively fine material deposition in areas where this poses a significant risk due to re-suspension.

#### 1.2.3.2 Periodic LiDAR Observations for Use in Mapping and Roughness Calculations

Quantitative characterization of Tillage morphology is essential for accurately mapping, classifying, and evaluating compliance of the Tillage BACM over time.

On tilled areas, terrain analysis will be used to quantify measurements of Tillage elements, such as RH and RS. Several methods are possible for quantifying Tillage roughness through terrain analysis, including LiDAR (Light Detection and Ranging) and a new remote imaging.

At this juncture, LADWP believes that the best available method for quantifying tillage roughness is with aerial LiDAR. The following steps summarize the process for analyzing aerial LiDAR to assess tillage roughness:

1. Acquire Elevation Data: The first step in the roughness determination is to acquire digital elevation data with sufficient resolution and accuracy to capture the variability at different spatial scales. At least once a quarter, LADWP will capture high-resolution elevation data with aerial LIDAR and use it to produce a DEM for each tilled area.

2. Identify Tillage Elements: The next step in the process is to identify and extract tillage element morphological data from the DEM. Morphometric elements of interest include tillage ridge, inter-ridge, and furrow positions.

3. Characterize Tillage Elements: After the DEM data are acquired and quantified, elevation values for each identified Tillage element will then be estimated from the DEM and used to quantify RH and RS. These calculations result in local height and spacing estimates across the Tillage BACM area.

4. Reporting Scale: Tillage element characteristics will be aggregated to three spatial grid scales (i.e., 1-acre, 10-acre, and 100-acre grids), similar to the approach used in the Managed Vegetation BACM reporting process. Similar to Managed Vegetation, these reporting scales were chosen to ensure compliance at different spatial scales while also providing operational flexibility. This approach provides meaningful feedback on the Tillage row condition over time. Standard summary statistics (minimum, maximum, mean, median, range, and standard

deviation) will be summarized for row height and row spacing. A ratio of the representative row height and row spacing will then be reported at each grid level.

5. Reporting Frequency and Operational Considerations: Comprehensive coverage of highresolution elevation data will be collected on a quarterly basis to quantify and report Tillage element characteristics using the methods outlined above. As part of the operational management process, regular evaluation of Tillage will be completed using a variety of tools, including high-resolution optical data (i.e., satellite imagery). It is anticipated that visual changes in texture of the Tillage site will be readily identified in the optical imagery and will provide a prioritization tool, identifying potential blowouts (i.e., highly eroded areas) or problems within the Tillage areas. If blowouts or areas of interest are identified, small-scale acquisition of elevation data may be acquired to further quantify and assess the change in row height and spacing. Elevation data acquisition for these localized areas will be accomplished through survey-grade GPS, terrestrial LIDAR, or other appropriate methods. Once the elevation data are captured, they will be analyzed using the same geomorphometric procedures outlined above. This information, combined with other factors, will be used to determine if operational enhancements to the localized Tillage problem areas are required.

#### 1.2.3.3 Ground-based Observations

· · · · ·

Ground observations are usually needed to complement aerial and satellite-based collections:

1. Important features that cannot be evaluated remotely with confidence, such as soil structure.

2. Information needed to calibrate remotely sensed data or interpretations.

3. Tactical, spot observations where remote observations are impractical, inconvenient, or in need of calibration.

Ground based observations will be employed sparingly, and focused on resolving questions and testing hypotheses of the day.

Initially, regular observations are expected to be tied to key features (roughness, loose and fine material deposition), and focused around the perimeter areas of tilled areas.

#### **1.3 Site Maintenance**

In this section, maintenance triggers and optional maintenance responses are described.

#### 1.3.1 Maintenance Triggers

. .

Maintenance will be undertaken on that portion of each tilled area that falls below the range of acceptable roughness as described in Section 3.3.2, Evaluating Tillage Control Efficiency Over Large Areas, in the Tillage BACM Application (pp. 39-42). The procedure for determining which portion of each tilled site is sufficient rough is described as follows.

1. Shortly after the initial tillage operation and periodically thereafter, roughness will be assessed by remote sensing on one-acre blocks encompassing the entire tillage area. One-acre blocks with an average RH/RS that exceeds the threshold RH/RS will be considered sufficiently rough to control sand motion and PM10 emissions. One-acre blocks with an average RH/RS that falls below the threshold RH/RS will be assigned a control efficiency (CE) based on the maximum of either Equation 7 (see Appendix B of Application) or a fetch relationship from SWEEP (described below). For mapping purposes, contiguous areas with similar roughness will be merged into larger polygons using remote sensing techniques.

2. Based on the same one-acre remote sensing grid system, the fetch distance for the merged polygons will be assessed along the predominant wind directions, which may vary for different locations on the playa. The CE associated with each fetch distance will be assessed using a set of relationships generated using the Single-event Wind Erosion Evaluation Program, or SWEEP. In this case, the CE is the fetch-limited sand motion relative to that achieved on the open playa with unlimited fetch. A site-appropriate SWEEP curve will be used, representing the unique soil and surface conditions that exist on each tilled site.

3. The CE generated by the SWEEP relationships in step #2 considers fetch effects but assumes a smooth, erodible surface with no aerodynamic sheltering from existing roughness. The CE in step #1 accounts for the aerodynamic sheltering but no fetch. Thus, the CE for each roughness area is the maximum of steps #1 and #2.

4. The CE of the entire tilled site will then be determined using the area-weighted average CE of the various roughness areas. The areas with high roughness (RH/RS > threshold RH/RS) are assumed to have 100 percent control because  $u^*t > u^*$  using the methods described in Appendix B of the Application.

5. The overall site will be judged "sufficiently rough" if the adjusted area-weighted average CE is greater than or equal to the District-required CE for a site. Nominally, the control efficiency is 99% but could vary depending on the location, frequency, and magnitude of dust emissions from each tilled site.

Even if the entire site is judged "sufficiently rough," LADWP will have the option to enter tilled areas to re-roughen the surfaces that have degraded over time by a combination of wind and

water erosions. If the entire site is deemed "not sufficiently rough," then LADWP will have to entire the site to maintain the surfaces using the methods summarized below.

#### 1.3.2 Maintenance Options

.

. .

When and where monitoring data so indicate, maintenance to re-roughen areas will be undertaken. Areas warranting such activity must (a) approach or fall below the required roughness thresholds, and (b) approach or exceed a scale large enough to produce emissions.

When/where/if, through field inspection or actual tillage, it is determined that no method of retillage is likely to restore adequate roughness, or for any other operational reason, LADWP may shift an area to some other method of dust control, or re-flooded. In the event of re-flooding, once soil has been thoroughly wetted, it may be re-drained, and re-tilled to restore roughness.

# EXHIBIT C

# Attachment C to the Stipulated Judgment Protocol for Monitoring and Enforcing Owens Lake Tillage with BACM Backup

#### A. Objective

. . . .

The Great Basin Unified Air Pollution Control District (District) intends to use this protocol as a basis for monitoring and enforcing the Owens Lake PM<sub>10</sub> control method known as "Tillage with Best Available Control Measure (BACM) Backup" (TwB2). The District intends to use the methods set forth in this protocol as a basis for determining if TwB2 areas on the Owens Lake bed need maintenance and/or reflooding in order to maintain or reestablish control efficiency for compliance with the National Ambient Air Quality Standard for particulate matter less than or equal to 10 microns (PM<sub>10</sub>). The District requires the Los Angeles Department of Water and Power (LADWP) to at all times maintain all TwB2 areas in compliance with all conditions and procedures contained in this document such that TwB2 areas provide the 99 percent PM<sub>10</sub> reduction levels associated with the most stringent measure BACM required on Owens Lake.

#### B. Introduction

- TwB2 is a District-approved variation of the approved Shallow Flood BACM that wets and/or roughens emissive Owens Lake bed surfaces to prevent air emissions. TwB2 consists of soil tilling and/or wetting within all or portions of Shallow Flood BACM PM<sub>10</sub> control areas (TwB2 Areas) where sufficient shallow flood infrastructure and available water supply exists.
- 2. TwB2 can be used by LADWP throughout the Owens Lake bed where backup Shallow Flood BACM infrastructure exists and can be implemented as set forth in this protocol to ensure that tilled areas do not cause or contribute to PM<sub>10</sub> Standard exceedances.
- 3. LADWP is required to reflood TwB2 Areas as set forth herein upon a written order issued by the District's Air Pollution Control Officer (APCO). LADWP may not appeal an APCO order to reflood a TwB2 Area to the District Governing or Hearing Boards or any other agency.
- 4. Within 37 calendar days of a written order by the APCO that all or part of a TwB2 Area must be reflooded, LADWP shall reflood so as to reestablish compliant Shallow Flooding in that area in accordance with the Shallow Flooding BACM requirements contained in the latest Owens Valley Planning Area State Implementation Plan (SIP). If feasible, reflooding can be limited to portions of TwB2 Areas that are determined by the APCO to require reflooding and not to the entire TwB2 Area as defined by LADWP.

- 5. Failure to comply with the Shallow Flooding BACM requirements in any area within 37 days of the APCO's written order to reflood may result in notices of violation from the APCO for each day of non-compliance.
- 6. Initial TwB2 tillage decisions are at LADWP's sole discretion, but shall follow the "TwB2 Site Selection and Operations & Maintenance Protocols for Owens Lake" prepared by LADWP and dated May, 2014 (O&M Protocol, attached as Attachment B to the Stipulated Judgment). LADWP reserves the right to modify the O&M Protocol based on supporting data and after consultation with the APCO. LADWP's right to modify its O&M Protocol does not extend to the sand flux or PM<sub>10</sub> monitoring procedures or thresholds set forth in the O&M Protocol which may conflict with this overriding Monitoring and Enforcement Protocol. Those provisions may only be modified by LADWP with consent of the APCO.
- 7. LADWP shall also have sole discretion regarding implementing and maintaining TwB2 Areas such that they remain sufficiently non-emissive to maintain the 99 percent control efficiency required for Owens Lake BACM. Implementation and maintenance efforts shall follow the provisions of LADWP's O&M Protocol and can include any combination of retilling, reflooding, sprinkling, flattening, compacting or other measures intended to maintain or restore the PM<sub>10</sub> control efficiency of tilled surfaces.
- 8. The boundaries for each TwB2 Area proposed for tillage will be pre-defined by LADWP prior to implementation. Each TwB2 Area will be monitored separately as specified in Section D, "TwB2 Monitoring Tests," below, in order to limit maintenance operations to the areas that require attention. LADWP shall notify the APCO of all pre-planned tillage activities in writing at least 14 calendar days before any tillage begins in an area. LADWP shall notify the APCO of emergency maintenance activities in writing as soon as practicable, but no later than the start of tillage activities. Failure to provide notifications may result in notices of violation from the APCO for each day on non-compliance.
- 9. Tillage shall create rows and furrows in roughly east to west directions in order to create maximum surface roughness for winds from the north and south. Additional roughness to protect surfaces from west winds shall be created in tilled areas sufficient to prevent emissions from east and west winds. Failure to protect tilled lakebed surfaces from all wind directions may result in an APCO reflood order. See Section F for requirements to provide protection from west winds.
- 10. If TwB2 maintenance is indicated by any of the below described TwB2 Monitoring Tests (Section D Tillage Roughness Test, Sand Flux Test, PM<sub>10</sub> Monitor Test, Induced

Attachment C to Stipulated Judgment, Page 2

-

Particulate Emission Test or Surface Armoring Test) or by Surface Integrity Observations (Section E), LADWP will have 37 calendar days during the dust season (October 15 through June 30) and 74 calendar days during summer season (July 1 through October 14) to select and execute maintenance procedures. Any maintenance under way at the start of the dust season (October 15) shall be completed by November 1. Failure to execute maintenance procedures and reestablish a compliant tilled or flooded surface within specified time limits may result in notices of violation and/or reflood orders from the APCO.

- 11. TwB2 maintenance options include re-tilling, wetting with sprinkler systems, re-flooding or any other techniques selected at LADWP's discretion in accordance with the O&M Protocol.
- 12. After the maintenance activities have been performed, re-testing using the tests set forth in Section D will be conducted within 30 calendar days.

#### C. Dry-Down Period

\_ • \_ •

- A "dry down" period may be necessary to transition a Shallow Flood Area to TwB2. It is recognized that there is the possibility of dust emissions during the dry-down period after Shallow Flooding is shut off when the surface soils are emissive, but the deeper soils are too wet to allow tilling. To reduce risk of emissions during this time, LADWP will take reasonable precautions to prevent dust emissions during the dust season (October 15 – June 30). Reasonable precautions include installation of temporary controls (*e.g.*, sand fencing, roughness elements, such as straw bales, or other wind barriers and surface protections) and phased drying/tilling as may be required to prevent dust emissions.
- 2. Failure to adequately control dust emissions during dry-down of TwB2 Areas may result in notices of violation and/or reflood orders from the APCO.

### D. TwB2 Monitoring Tests

The District will use the TwB2 monitoring tests set forth below to ensure TwB2 Areas provide the 99 percent emission reduction associated with the most stringent measure BACM required on the Owens Lake bed. The District acknowledges that the performance criteria set forth below may be more stringent than is necessary to meet the 99 percent emission reduction requirement, however, TwB2 did not go through the BACM development process set forth in the District's 2008 Owens Valley PM<sub>10</sub> State Implementation Plan. Therefore, in order to provide assurance that TwB2 will provide the high level of public health protection associated with most stringent measure BACM, the District will initially require that TwB2 Areas pass the

following tests. During the first year of TwB2 operation, the District will meet regularly with the LADWP to review and evaluate TwB2 performance. After one year of TwB2 operation experience, the APCO will consider revising the TwB2 performance criteria.

#### 1. Tillage Roughness Test

2.7

- a) The Tillage Roughness Test will use remote sensing and/or direct field measurements to determine Ridge Spacing (RS) and Ridge Height (RH) in order to calculate inverse roughness (RS divided by RH or RS/RH). The T-12 Tillage Test site (heavy clay soils) was tilled with a ridge spacing of approximately 12 to 14 feet and a furrow bottom to ridge top difference of between 3.2 and 4 feet (ridge height = 1.6 to 2 feet). This yields inverse roughness values of 6.00 to 8.75 and has, as of September 2014, been shown to provide sufficient PM<sub>10</sub> control efficiency. Assuming that ridge tops will weather and lower, the inverse roughness value in TwB2 areas will be maintained at or below 10.0 (14/1.4) and the average ridge height will be at or above 1.25 feet (furrow depth to ridge top difference at least 2.5 feet). Averages will be calculated on 40-acre blocks as described in LADWP's O&M Protocol.
- b) Lidar, aerial photography or other APCO-approved methods with comparable accuracies will be used by LADWP to measure inverse roughness and ridge height. Roughness measurements will be made in the north-to-south direction the direction of the primary dust producing winds. Roughness measurements may also be made in other directions. See Section F for requirements to provide protection from west winds. Roughness measurements will be reported to the APCO within 30 days of measurement.
- c) Inverse roughness and ridge height measurements will be made at 6 month, or more frequent, intervals. Inverse roughness and ridge height for a TwB2 Area will be tracked and plotted as a function of time. Where feasible, field measurements may also be taken to confirm lidar or other remotely sensed results. LADWP will conduct regular roughness measurements and report the measurements within 30 days to the APCO. The District reserves the right to conduct its own roughness measurements at any time.
- d) Tillage maintenance will be performed by LADWP if average inverse roughness is between 10.1 and 12.0 or if average ridge height is less than 1.3 feet in a tilled area.

- e) The APCO may issue a full or partial TwB2 Area reflood order if inverse roughness exceeds 12.0 (12/1) or ridge height falls below 1.0 foot for any defined 40-acre averaging area.
- f) The APCO reserves the right to adjust the above criteria based on supporting data and after consultation with LADWP.

#### 2. Sand Flux Test

er 1

. \*

- a) Each tilled area, as defined in Section B.8, will be instrumented by LADWP with at least four Sensits and Cox sand catchers (CSCs) on untilled surfaces (circular pads with 3 m radius) in the general northern, southern, eastern and western portions of a tillage area. The APCO may require proportionally more sand catchers in tilled areas greater than 320 acres such that there is approximately one Sensit per 80 acres of TwB2 Area.
- b) LADWP will pair CSCs with Sensits, radio equipment and dataloggers programmed to record 5-minute sand motion data. All Sensit data will be reported to the District via the District's radio data collection network. Sand motion data from the CSCs and Sensits will be processed to calculate the sand flux history of a site.
- c) All sand flux monitoring equipment will be placed by LADWP as soon as practicable as Shallow Flood areas dry, but no later than the start of tillage activities. Failure to deploy monitoring equipment may result in notices of violation and/or reflood orders from the APCO.
- d) High sand flux values recorded during maintenance activities and non-tillage sand flux sources shall be excluded from the sand flux data. Maintenance activities and non-tillage sand flux sources may include, but are not limited to, rain-splatters, bugs, adjacent grading and road construction activities, as well as vehicle traffic. Sensits should be placed so as to minimize impacts from nontillage sand flux sources. The APCO shall have sole authority to determine if Sensits have been impacted by non-tillage area sand flux sources or activities.
- e) When (other than during maintenance activities taking place in the tillage area) the sand flux exceeds 0.50 g/cm<sup>2</sup>/day, LADWP will perform maintenance in the tillage area.
- f) The APCO may issue a partial or full TwB2 Area reflood order if sand flux exceeds 1.0 g/cm<sup>2</sup>/day at any sand flux site within a TwB2 Area.

- g) The APCO acknowledges that these sand flux triggers may be conservative for TwB2 areas located away from the regulatory shoreline. The APCO may adjust the sand flux trigger value on a case-by-case basis for each TwB2 area based on its distance from the regulatory shoreline.
- h) The APCO reserves the right to adjust the above criteria based on supporting data and after consultation with LADWP.

#### 3. PM<sub>10</sub> Monitor Test

- a) Each TwB2 area will be assigned upwind and downwind PM<sub>10</sub> monitors (not necessarily at the TwB2 Area boundary) to monitor PM<sub>10</sub> emissions from the tillage area. For a given wind direction, the downwind monitors shall be within 22 degrees (±11.5°) of the upwind monitors. Upwind/downwind monitor assignments will be requested by LADWP and approved by the APCO. Existing monitors operated by the District may be used as upwind/downwind monitors. Additional EPA-approved monitors shall be operated by LADWP, unless mutually agreed otherwise. If a monitor is operated by LADWP, its operation and maintenance must follow District procedures and data collection must be incorporated into the District communications network. The District reserves the right to audit monitors and monitoring data collected by LADWP to install and operate additional PM<sub>10</sub> monitors to adequately monitor the PM<sub>10</sub> emissions coming from tilled areas.
- b) All PM<sub>10</sub> monitoring equipment will be in place as soon as practicable as Shallow Flood areas dry, but no later than the start of tillage activities. Failure to deploy PM<sub>10</sub> monitoring equipment may result in notices of violation and/or reflood orders from the APCO.
- c) Impacts caused by maintenance activities and non-tillage sources shall be excluded from the PM<sub>10</sub> data. Maintenance activities and non-tillage PM<sub>10</sub> sources may include, but are not limited to, adjacent grading and road construction activities, as well as vehicle traffic. PM<sub>10</sub> monitors should be placed so as to minimize impacts from non-tillage sources. The APCO shall have sole authority to determine if monitors have been impacted by maintenance activities and/or non-tillage area sources.
- d) When the daily downwind to upwind PM<sub>10</sub> concentration difference for any dust event (other than during maintenance activities in the tillage area) exceeds 50

 $\mu$ g/m<sup>3</sup> and there is no evidence to show that the additional downwind PM<sub>10</sub> did not come from the TwB2 Area, maintenance will be performed in the tillage area.

- e) The APCO may issue a reflood order if the daily  $PM_{10}$  difference between the downwind and upwind monitors exceeds 100  $\mu$ g/m<sup>3</sup>.
- f) The APCO reserves the right to adjust the above criteria based on supporting data and after consultation with LADWP.

#### 4. Induced Particulate Emission Test

- ----

- a) The District will utilize the Induced Particulate Erosion Test (IPET) method to determine if tilled area surfaces are starting to become emissive and to advise LADWP with erosion potential alerts. The method described below may be modified based on the results of a study being conducted by the Desert Research Institute for the District. The District will discuss the results of the IPET study with LADWP.
- b) The IPET method proposes to use a small radio-controlled helicopter-type craft (Radio-Controlled Wind Induction Device or RCWInD) to create wind on the surface. Because the winds created by the RCWInD will vary with differing craft designs, each craft will be pre-tested to determine the test height above the surface (Ht) at which the craft creates a target maximum horizontal wind speed (TWS) measured at 1 centimeter  $(U_{0.01})$  above a flat surface. The initial TWS is 11.3 meters per second (m/s). The TWS may be modified by the APCO based on supporting data and after consultation with LADWP. If the payload on a craft is changed, e.g. a different camera is used, then Ht must be re-determined for the new payload since it will affect the amount of thrust needed to keep the RCWInD aloft. Testing to determine Ht and TWS will be done on a smooth flat surface, e.q. concrete or asphalt pavement or plywood test platform with calm ambient winds (< 2 m/s). The maximum wind speed for any flight height is taken at a height one centimeter above the surface at a point that is one rotor blade length away from the point beneath the center of the fastest rotor blade taken on a line extending outward from the rotor arm. The wind speed measurement is taken with a pitot tube pointing toward the center of the rotor blade. The RCWInD must be flown in a stationary position to get a sustained measurement from the anemometer. When the craft is flown over a ridged surface, the flight height is measured from the bottom of the craft's rotor blades to the highest surface projection anywhere directly below the craft.

- c) The District will give LADWP field operations staff at least 24 hour notice of the time and place for RCWInD runs in order to allow LADWP staff an opportunity to observe those tests. LADWP staff does not need to be present for RCWInD testing to be used to call erosion alerts.
- d) Three erosion alert levels are set using the IPET method: 1) an <u>early warning</u> of possible clod and surface stability deterioration, 2) a <u>warning</u> level to alert LADWP of a potential breakdown of the surface stability and to advise voluntary maintenance efforts, and 3) a <u>mitigation</u> action level to require retilling and/or reflooding of all or part of a TwB2 Area. The IPET method will be used to determine erosion alert levels as follows:
  - Level 1 An erosion <u>early warning</u> is indicated when any visible dust is observed to be emitted from a surface or particles are dislodged when the RCWInD is flown at a height below one half of H<sub>t</sub>. Voluntary mitigation may be appropriate to prevent further surface degradation.
  - ii. Level 2 An erosion <u>warning</u> is indicated when any visible dust is observed to be emitted from a surface when the RCWInD is flown at a height below  $H_t$  and above one half of  $H_t$ . Voluntary mitigation is advised to prevent further surface degradation.
  - iii. Level 3 <u>Mitigation</u> action is required if visible dust is observed to be emitted from a surface when the RCWInD is flown at a height of H<sub>t</sub> or higher. If ordered by the APCO, LADWP must retill and/or reflood all or part of a TwB2 Area that triggers a Level 3 alert.

The APCO acknowledges that warning and mitigation triggers may be conservative for TwB2 areas located away from the regulatory shoreline. The warning and mitigation trigger values may be adjusted on a case-by-case basis by the APCO for each TwB2 area based on its distance from the regulatory shoreline. After one year of experience with TwB2 and the IPET test, LADWP and the District will meet to discuss the results of the testing and consider adjustments to the triggers.

e) The APCO reserves the right to adjust these criteria based on supporting data and after consultation with LADWP.

Attachment C to Stipulated Judgment, Page 8

#### 5. Surface Armoring Test

س. ۲

- a) Previous studies indicate surface armoring with clods is essential to creating a tilled surface that prevents dust emissions. The District intends to review existing studies and conduct tests to develop a technique to measure the surface armoring or "cloddiness" of a tilled area and set a minimum required level of surface armoring.
- b) In order to assure TwB2 areas do not cause or contribute to exceedances of the PM<sub>10</sub> standard, an initial target clod cover of 60 percent will be used. Soil clods must be 1/2 inch diameter or larger. The APCO may issue a reflood order if the clod cover in a tilled area is less than 60 percent. This value will be reevaluated by the APCO after one year of TwB2 implementation and as appropriate thereafter.
- c) Clod coverage will be measured concurrently with roughness measurements by LADWP and/or the District. Lidar, aerial photography, point-frame, or other APCO-approved methods with comparable accuracies will be used by LADWP to measure clod coverage. Clod cover measurements will be reported to the APCO within 30 days of measurement. The APCO shall approve the clod cover measurement method.
- d) Upon completion of any additional testing or observation of TwB2 Areas, and after consultation with LADWP, the APCO reserves the right to adjust these criteria.

### E. Surface Integrity Observations

- The District will notify LADWP's designated representatives on monthly basis or as otherwise required during the dust season (October 15 through June 30) of District field observations to evaluate the overall erosion stability of the tillage areas based on surface observations, soil conditions, and the results of the above described TwB2 monitoring tests.
- 2. The District will use on-site visual observations, as well as photography, video or other remote sensing techniques to document the condition and potential emissivity of tilled areas. Conditions including, but not limited to, the presence or absence of ridge-top and furrow-bottom clods, loose soil deposits, efflorescence and ridge erosion will be used to evaluate the overall integrity of tilled areas. These observations will be used in conjunction with the above described tests to recommend that LADWP undertake maintenance activities or as a basis for an APCO reflood order.

#### F. Protection from Winds Parallel to Tillage Rows

. . ......

- 1. Paragraph B.9., above, requires tillage rows and furrows in roughly east to west directions in order to create maximum surface roughness for winds from the north and south.
- 2. In order to ensure that tillage areas are protected from all wind directions, tilled areas will be jointly evaluated by District and LADWP staffs within 5 calendar days after initial tillage activities to determine if the tillage configuration and clodding will provide sufficient protection. If the District determines that the tilled areas will not provide protection from all wind directions the APCO will notify LADWP that additional protection measures will be required.
- 3. Upon such notification by the APCO, LADWP will take further actions to create additional protection from winds parallel to the initial rows and furrows, it will deploy other protection measures (*e.g.*, additional tillage ridges oriented perpendicular to the original tillage or creation of clod clover greater than 60%), or it may abandon tillage in the area of concern and reestablish compliant Shallow Flooding. The DWP must implement the additional protection measures within 15 days of being notified by the APCO.
- 4. Failure to protect tilled lakebed surfaces from all wind directions may result in an APCO reflood order.

| 1      |                                                                                                                                               | PROOF OF SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RVICE                                                                         |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|
| 2      | I declare that I am employed with the law firm of Morrison & Foerster LLP, whose addres                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |
| 3      | is 707 Wilshire Boulevard, Los Angeles, California 90017-3543. I am not a party to the within cause, and I am over the age of eighteen years. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |
| 4      | I further declare that on December 19, 2014, I served a copy of:                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |
| 5<br>6 |                                                                                                                                               | STIPULATED JUDGMENT FOR RESPONDENT AND<br>DEFENDANT GREAT BASIN UNIFIED AIR POLLUTION<br>CONTROL DISTRICT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                               |  |
| 7      | স                                                                                                                                             | BY U.S. MAIL [Code Civ. Proc sec. 1013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (a)] by placing a true copy thereof                                           |  |
| 8      |                                                                                                                                               | enclosed in a sealed envelope with postage<br>follows, for collection and mailing at Morri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | thereon fully prepaid, addressed as son & Foerster LLP, 707 Wilshire          |  |
| 9      |                                                                                                                                               | Boulevard, Los Angeles, California 90017-3543 in accordance with Morrison & Foerster LLP's ordinary business practices.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                               |  |
| 10     |                                                                                                                                               | I am readily familiar with Morrison & Foer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ster up's practice for collection and                                         |  |
| 11     |                                                                                                                                               | processing of correspondence for mailing w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ith the United States Postal Service, and                                     |  |
| 12     |                                                                                                                                               | know that in the ordinary course of Morriso document(s) described above will be deposited above will b | in & Foerster LLP's business practice the lited with the United States Postal |  |
| 13     |                                                                                                                                               | Service on the same date that it (they) is (are) placed at Morrison & Foerster LLP with postage thereon fully prepaid for collection and mailing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |  |
| 14     | X                                                                                                                                             | <b>BY ELECTRONIC SERVICE [Code Civ. Proc sec. 1010.6; CRC 2.251]</b> by electronically mailing a true and correct copy through Morrison & Foerster LLP's electronic mail system to the email address(es) set forth below, or as stated on the attached service list per agreement in accordance with Code of Civil Procedure section 1010.6 and CRC Rule 2.251.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |
| 15     |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |
| 16     |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |
| 17     |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |
| 18     |                                                                                                                                               | Edward J. Casev. Esg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Attorneys for the City of Los                                                 |  |
| 19     |                                                                                                                                               | Andrew Brady, Esq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Angeles                                                                       |  |
| 20     |                                                                                                                                               | Alston & Bird LLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |  |
| 21     |                                                                                                                                               | 333 South Hope Street 16" Fl.<br>Los Angeles, CA 90071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                               |  |
| 22     |                                                                                                                                               | Julie Riley, Deputy City AttorneyAttorneys for the City of LosDavid Edwards, City AttorneyAngelesCity Attorney's OfficeAngeles111 North Hope Street, Suite 340Los Angeles, CA 90012-2607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Attorneys for the City of Los                                                 |  |
| 23     |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Angeles                                                                       |  |
| 24     |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |
| 25     |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |
| 26     |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |
| 27     |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |
| 28     |                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |
| I      | la-1206665                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |

PROOF OF SERVICE

| 1  | Michael W. Neville Attorneys for Air Resources                     |  |  |
|----|--------------------------------------------------------------------|--|--|
| 2  | Bryant Cannon<br>Deputy Attorney General – Office of the           |  |  |
| 3  | California Attorney General<br>455 Golden Gate Avenue, Suite 11000 |  |  |
| 4  | San Francisco, CA 94102-7004                                       |  |  |
| 5  | Susan A. Austin Attorney for California State                      |  |  |
| 6  | California Attorney General                                        |  |  |
| 7  | P.O. Box 70550                                                     |  |  |
| 8  | Oakland, CA 94612                                                  |  |  |
| 9  |                                                                    |  |  |
| 10 | foregoing is true and correct.                                     |  |  |
| 12 | Executed at Los Angeles, California, December 19, 2014.            |  |  |
| 13 |                                                                    |  |  |
| 14 |                                                                    |  |  |
| 15 | Holly Hickish Aplantial                                            |  |  |
| 16 | (typed) (signature)                                                |  |  |
| 17 |                                                                    |  |  |
| 18 |                                                                    |  |  |
| 19 |                                                                    |  |  |
| 20 |                                                                    |  |  |
| 21 |                                                                    |  |  |
| 22 |                                                                    |  |  |
| 23 |                                                                    |  |  |
| 24 |                                                                    |  |  |
| 26 |                                                                    |  |  |
| 27 |                                                                    |  |  |
| 28 |                                                                    |  |  |
|    | la-1206665 2                                                       |  |  |

- \_ - - ---

# Board Order #160413-01 Attachment B

# 2016 Owens Valley Planning Area Additional BACM Contingency Measures Determination

# BACKGROUND

This attachment describes the evidence that will be used by the Air Pollution Control Officer to determine whether BACM Contingency Measures are required to meet the National Ambient Air Quality Standard at the shoreline of the dried Owens Lake bed and the State Standard in surrounding communities.

## **CONDITIONS**

The 2016 Owens Lake Dust Source Identification Program Protocol (Dust ID Protocol) (Board Order #160413-01, Attachment C) contains the procedures to collect, screen, analyze and model the data used by the District's APCO to determine if exceedances of the 24-hour PM<sub>10</sub> NAAQS or State Standard have occurred and additional dust controls are necessary on the Owens Lake bed. The following actions may be taken by the APCO and will not be considered a change to the Dust ID Protocol:

- Add, remove or move PM<sub>10</sub> monitors and meteorological stations
- Selection and use of any USEPA-approved Reference or Equivalent Method monitors that collect hourly concentration data
- Selection and use of any sand flux monitor (SFM)
- Add, remove or move SFMs as long as the maximum grid cell size for modeling remains at one square kilometer
- Calculate "from-the-lake" wind directions for new PM<sub>10</sub> monitor sites
- Determine default K-factors for new source areas
- The background value of 20  $\mu$ g/m<sup>3</sup> may be changed to another value or a procedure may be established to calculate the background from upwind/downwind lake bed monitors
- The default K-factors may be updated
- The default seasonal cut points may be updated
- The CalPUFF modeling system may be changed to another USEPA guideline model
- The procedure for determining the sand flux from a Dust Control Measure (DCM) area may be updated
- The K-factor screening criteria may be updated
- From-the-lake wind directions in Table B-1 may be changed to avoid including off-lake sources
- Non-reference or non-equivalent method special purpose PM<sub>10</sub> monitors may be added
- Procedures for determining source area boundaries may be updated
- Methods for directly measuring source area emission rates may be implemented

# **DEFINITIONS**

A *shoreline or near-shore*  $PM_{10}$  *monitor* is a fixed or portable USEPA-approved Federal Reference Method or Equivalent Method  $PM_{10}$  Monitor located at or above the 3600-foot elevation (Regulatory Shoreline) contour within the Owens Valley Non-Attainment Area.

A *special purpose*  $PM_{10}$  *monitor* is a fixed or portable USEPA-approved Federal Reference Method or Equivalent Method  $PM_{10}$  monitor installed upwind of or near potential dust source areas on the lake bed below the 3600-foot elevation. These lake bed  $PM_{10}$  monitors will be used to monitor new dust sources areas to generate new K-factors and to evaluate model predictions at the  $PM_{10}$  sites.

An *exceedance* is a midnight to midnight Pacific Standard Time 24-hour average  $PM_{10}$  concentration greater than 150 µg/m<sup>3</sup> measured by a shoreline or near-shore  $PM_{10}$  monitor.

*From-the-lake wind directions* are determined by extending two straight lines from the  $PM_{10}$  monitor site to the points on the 3600-foot contour of the Owens Lake bed that maximize the angle in the direction of the lake bed between the two straight lines. From-the-lake and non-lake wind directions for the existing  $PM_{10}$  monitor sites are shown in Attachment B, Table B-1.

*Physical evidence* of a source area boundary consists of Global Positioning System (GPS) data, visual observations, photographic observations, video observations, or any other method described for this purpose in the Dust ID Protocol.

*Extreme violators* are areas currently required to implement BACM, but BACM are found to be insufficient to adequately control emissions.

*Environmental analysis document complete* means that a project level environmental document has been certified covering the location and the BACM selected for implementation by the City.

*Regulatory Shoreline* is the 3,600-foot above sea level elevation contour surrounding Owens Lake and within the Owens Valley Planning Area. The APCO shall be solely responsible for determining the location of the regulatory shoreline.

**Communities** are areas zoned for residential use in the latest Inyo County General Plan Land Use Diagrams.

## PROCEDURE TO IDENTIFY EVIDENCE FOR ADDITIONAL BACM CONTIGENCY MEASURE DETERMINATION

For the purpose of making BACM contingency measure determinations, exceedances of the federal 24-hour  $PM_{10}$  National Ambient Air Quality Standard of 150 µg/m<sup>3</sup> at or above the Regulatory Shoreline of Owens Lake or exceedances of the State Standard of 50 µg/m<sup>3</sup> within communities, can either be measured directly via a  $PM_{10}$  monitor or they can be modeled following the procedures in the latest version of the Dust ID Protocol. Set forth below are the two procedures to be used by the APCO to identify evidence for use in making these
determinations: the first uses directly monitored exceedances and the second uses modeled exceedances.

#### A. MONITORED EXCEEDANCES

<u>A.1 – Do lake bed source areas cause or contribute to a monitored 24-hour average  $PM_{10}$  concentration greater than 150 µg/m<sup>3</sup> at a  $PM_{10}$  monitor located at or above the Regulatory Shoreline or exceedances of the State Standard of 50 µg/m<sup>3</sup> within communities?</u>

Any event that causes a monitored 24-hour average  $PM_{10}$  concentration greater than  $150 \ \mu g/m^3$  at a  $PM_{10}$  monitor located at or above the Regulatory Shoreline or greater than  $50 \ \mu g/m^3$  within communities will be evaluated to determine if lake bed dust source areas caused or contributed to the exceedance. The following steps will be used to screen hourly  $PM_{10}$  concentrations to determine if a lake bed source area caused or contributed to a monitored exceedance:

- 1) For hourly average from-the-lake wind directions, use the recorded hourly  $PM_{10}$  concentration.
- 2) For hourly average non-lake wind directions or missing data, replace the recorded hourly  $PM_{10}$  concentration with the background concentration of 20  $\mu$ g/m<sup>3</sup>.
- 3) Average the adjusted hourly concentrations from steps 1 and 2 for the 24-hour period from midnight to midnight, Pacific Standard Time.

If the 24-hour average of the adjusted hourly  $PM_{10}$  concentrations exceeds 150  $\mu$ g/m<sup>3</sup> at the shoreline monitor site or 50  $\mu$ g/m<sup>3</sup> at the community monitor site, go to A.2. If not, go to B.1.

<u>A.2 – Is there physical evidence of lake bed emissions and/or air quality modeling sufficient to</u> <u>define boundaries for the area to be controlled?</u>

#### Source Delineation.

If possible, the boundary of a dust source area will be delineated by a survey using GPS equipment or APCO-approved remote sensing techniques. Under certain circumstances, the surveyed boundary of the dust source area will not result in a closed polygon. If the GPS survey yields a partial boundary and not a closed polygon, then the polygon area may be closed, if the length of the closure is equal to or less than one-half kilometer or is less than 20 percent of the surveyed source area perimeter, whichever is smaller. The ends of the partial surveyed area boundary will be completed with a straight line, unless survey notes or visual observations indicate that a different shaped boundary should be used. If the surveyed source area boundary has a complex shape, then the partial boundary to be closed will use the best available field and visual data to connect the two ends and form the polygon. Boundaries of existing controlled areas or other previously located boundaries will be used in place of a GPS survey boundary, if the survey notes or visual observations indicate that boundary.

If the GPS boundary described above is not available, the area will be defined by any one or a combination of GPS surveying, visual observations, remote sensing and/or video observations or any other method approved by the APCO.

If neither the GPS boundary nor other physical evidence, as described above, is available, the default area size will be one square kilometer centered on the sand flux monitor (SFM), or one grid cell if the SFMs are in a closer array.

If there is physical evidence, as described above, to define the boundaries for the area to be controlled, and no K-factor for that area or no sand catch data above one gram for the sampling period from a sand flux sampler located within a 30 degree upwind cone centered on the wind direction of the defined source, then modeling cannot be performed. Go to A.3.

#### Modeling.

If sand flux data is available for the exceedance identified in A.1, the District will model the event. Modeling will be performed following the latest Dust ID Modeling Protocol using the source area determined above.

The order of priority for applying K-factors in the model will be:

- 1) When available, the District will use event specific storm-average K-factors to model dust events at the  $PM_{10}$  monitor if there are three or more hours of screened hourly K-factors for a 48-hour period. If not,
- 2) The District will use the most recent temporal and spatial 75-percentile hourly K-factors to model events, if there are nine or more screened hourly K-factors for a period and they are determined by the methods described in the most current Dust ID Protocol. If not,
- 3) The District will use the default K-factors in Table B-2 to model events, based on the month of the event being investigated and the K-factor area.

Only those on-lake and off-lake dust sources with sand flux data will be included in the model.

The modeling results will be used to prioritize multiple upwind source areas for control, or to determine the fraction of a single upwind source area that needs to be controlled.

If there is insufficient physical evidence and no sand flux monitor data to determine the emissive area on the lake bed that caused the monitored or modeled exceedance, the District will install sand flux monitors or other physical evidence gathering equipment in the suspected area. The District will continue to collect physical evidence. If the APCO determines that the cumulative evidence collected in Paragraph A.2 is sufficient to show an exceedance, go to A.3.

#### A.3 – Dust Controls Required.

Based on the evidence, the APCO may order the City to implement BACM on the emissive area.

#### **B. MODELED EXCEEDANCES**

<u>B.1 – Does the Dust ID model predict a 24-hour shoreline concentration greater than 150  $\mu$ g/m<sup>3</sup> including background?</u>

#### Dispersion Modeling Analysis.

At least once a year, the District will examine the Dust ID information and dispersion model to determine if there have been any modeled shoreline exceedances since the period included in the last model run. Modeling will be performed following the Dust ID Protocol.

#### K-factors.

New K-factors may be generated from  $PM_{10}$  concentrations measured at any  $PM_{10}$  monitor using the methods described in the Dust ID Protocol. The order of priority for applying K-factors in the model will be:

- 1) The current temporal and spatial 75th percentile hourly K-factors. The District will use the current modeling period temporal and spatial 75th percentile hourly K-factors to model events, if there are nine or more hourly K-factors for a seasonal period and area determined by the methods described in the most current Dust ID Protocol.
- 2) If there are fewer than nine hourly K-factors for any area and period, the District will use the default K-factors in Table B-2 to model events, based on the month of the event being investigated and the K-factor area. If the new dust source area is not within a K-factor area shown on the map in Figure B-1, the APCO shall determine the default K-factor for the new source area based on the default K-factors of areas with similar soil characteristics.

#### Source Area Size, Location and Sand Flux.

The boundary of a dust source area will be delineated by a survey using GPS equipment or APCO-approved remote sensing techniques. Under certain circumstances, the surveyed boundary of the dust source area will not result in a closed polygon. If the survey yields a partial boundary and not a closed polygon, then the polygon area may be closed, if the length of the closure is equal to or less than one-half kilometer or is less than 20 percent of the surveyed source area perimeter, whichever is smaller. The ends of the partial surveyed area boundary will be completed with a straight line, unless survey notes or visual observations indicate that a different shaped boundary should be used. If the surveyed source area boundary has a complex shape, then the partial boundary to be closed will use the best available field and visual data to connect the two ends and form the polygon. Boundaries of existing controlled areas or other previously located boundaries will be used in place of a GPS survey boundary, if the survey notes or visual observations indicate that boundary, if the survey notes or visual observations indicate the erosion area extends to that boundary.

If the GPS boundary described above is not available, the area will be defined by any one or a combination of GPS surveying, visual observations, remote sensing and/or video observations or any other method approved by the APCO.

The details of how to delineate source area boundaries are contained in the Dust ID Protocol.

If neither the GPS boundary nor the other physical evidence as described above is available, the default area size will be one square kilometer centered on the SFM, or one grid cell if the SFM are in a closer array.

If the modeling shows that lake bed source areas have caused or contributed to any modeled shoreline  $PM_{10}$  impact greater than 150  $\mu$ g/m<sup>3</sup> for a 24-hour average, go to B.6. If not, go to B.2.

#### <u>B.2 – Is the modeled concentration less than 100 $\mu$ g/m<sup>3</sup>?</u>

This refers to the modeled concentration calculated in B.1 and includes the background  $PM_{10}$  level of 20 µg/m<sup>3</sup>. If yes, go to B.5. If no, go to B.3.

#### <u>B.3 – District deploys reference and/or non-reference method Special Purpose PM<sub>10</sub> monitor(s)</u> to confirm model (if not already deployed).

The District will deploy reference and/or non-reference method Special Purpose  $PM_{10}$  monitor(s) on the lake bed upwind and downwind of the identified emissive area, if there are no existing monitors at locations that can be used in Section B.4 to refine the model predictions. Monitors will be located between 250 and 5000 meters outside of any delineated source area boundaries. These  $PM_{10}$  monitoring sites may be removed after the model confirmation procedure described in B.4. Shoreline and near-shore  $PM_{10}$  monitors that are sited to confirm the model may be used for NAAQS compliance. If an exceedance is monitored, go to B.6. If not, go to B.4

#### B.4 - Is the refined model prediction greater than $150 \mu g/m^3$ ?

For each event measured under Section B.3 that results in a 24-hour monitored concentration of greater than 100  $\mu$ g/m<sup>3</sup>, the event-specific K-factor (defined in the Dust ID Protocol) will be used to model the concentration at the shoreline receptors. If the event-specific K-factor was derived for the same year and season as the original event modeled in B.1, the Section B.1 event will be remodeled using the new K-factor. If either that remodeled concentration for the Section B.1 event, or the new modeled concentration for the on-lake monitored event, is greater than 150  $\mu$ g/m<sup>3</sup> at a shoreline receptor, go to B.6. If not, go to B.5.

The District will make a determination if any currently modeled event within the same season and K-factor area using the appropriate K-factors as determined by this procedure causes a shoreline receptor to exceed  $150 \ \mu g/m^3$ . If yes, go to B.6. If not, go to B.5.

#### B.5 – No action required.

No action is required of the City at this time. Data collected during this period can be used in conjunction with data collected at a later time to define emissive areas on the lake bed according to this protocol and to develop K-factors for emissive areas.

#### <u>B.6 – Dust Controls Required.</u>

Based on this evidence, the APCO may order the City to implement BACM on the emissive area.

#### Attachment B Maps and Tables

Figure B-1: Owens Lake Dust ID Monitor and K-factor Area map. Table B-1: Wind Directions to Determine Lakebed-caused Monitored Exceedances. Table B-2: Default Spatial and Temporal K-factors for the Dust ID Model



Figure B-1 Owens Lake Dust ID Monitor and K-factor Area Map

#### Table B-1

| PM <sub>10</sub>       | From-the-Lake                 | Non-lake                     |
|------------------------|-------------------------------|------------------------------|
| Monitor Site           | Wind Dir. (Deg.)              | Wind Dir. (Deg.)             |
| Lone Pine              | 126≤WD≤176                    | WD<126 or WD>176             |
| Keeler                 | 151≤WD≤296                    | WD<151 or WD>296             |
| Flat Rock              | 224≤WD≤345                    | WD<224 or WD>345             |
| Shell Cut              | WD $\geq$ 227 or WD $\leq$ 33 | 33 <wd<227< td=""></wd<227<> |
| Dirty Socks            | WD≥234 or WD≤50               | 50 <wd<234< td=""></wd<234<> |
| Olancha                | WD≥333 or WD≤39               | 39 <wd<333< td=""></wd<333<> |
| Bill Stanley           | WD≥349 or WD≤230              | WD<349 or WD>230             |
| Lizard Tail            | 128≤WD≤288                    | WD<128 or WD>288             |
| North Beach            | 55≤WD≤250                     | WD<55 or WD>250              |
| Mill Site              | 157≤WD≤333                    | WD<157 or WD>333             |
| New and Portable Sites | TBD                           | TBD                          |

#### Wind Directions to Determine Lakebed-caused Monitored Exceedances

TBD – From-the-lake and non-lake wind directions will be determined for new and portable sites by the APCO when sites are selected.

#### Table B-2

#### Default Spatial and Temporal K-factors for the Dust ID Model

| K-factor Area      | K-factor<br>JanApr. & Dec. | K-factor<br>May-Nov.   |
|--------------------|----------------------------|------------------------|
| Keeler Dunes       | 2.5 x 10 <sup>-5</sup>     | 2.5 x 10 <sup>-5</sup> |
| Keeler             | 2.2 x 10 <sup>-5</sup>     | 2.2 x 10 <sup>-5</sup> |
| Northwest Area     | 17.6 x 10 <sup>-5</sup>    | 6.6 x 10 <sup>-5</sup> |
| Northeast Area     | 21.2 x 10 <sup>-5</sup>    | 6.0 x 10 <sup>-5</sup> |
| Central Area       | 18.1 x 10 <sup>-5</sup>    | 5.3 x 10 <sup>-5</sup> |
| Managed Vegetation | 4.0 x 10 <sup>-5</sup>     | 4.2 x 10 <sup>-5</sup> |
| South Area         | 7.4 x 10 <sup>-5</sup>     | 4.3 x 10 <sup>-5</sup> |

## Board Order 160413-01 Attachment C

2016 Owens Lake Dust Source Identification Program Protocol



### **Great Basin Unified Air Pollution Control District**

157 Short Street, Bishop, California 93514 Telephone (760) 872-8211

Attachment C

Blank Page

## 2016 Owens Lake Dust Source Identification Program Protocol

#### **Table of Contents**

| 1. | Program Overview11.1Introduction11.2Locating Dust Source Areas11.3Monitored Exceedances11.4Modeled Exceedances31.5Sand Flux Measurements41.6Dust ID Program Protocol Content4                                                                                                                                                                                                                                                                  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | Protocol for Measuring Sand Flux Rates42.1Objective42.2Methods and Instrumentation42.3Operating Procedures82.4Data Collection82.5Quality Assurance112.6Calculating Hourly Sand Flux112.7Sensit Calibration and Data Analysis122.7.1Sensit Calibration Check122.7.2Replacing Missing Sand Catch Data132.7.3Replacing Missing Sensit Data13                                                                                                      |
| 3. | Protocol for Measuring Ambient PM10 and Meteorological Conditions133.1Objective133.2Methods and Instrumentation for PM10 and Meteorological Data133.3Operating Procedures, Instrument Calibration and Quality Assurance143.4Data Handling and Data Access Via Modem14                                                                                                                                                                          |
| 4. | Protocol for Observing and Mapping Source Areas and Dust Plume Paths144.1Objective144.2Methods and Instrumentation144.2.1Mapping Dust Source Areas from Off-Lake Observation Sites154.2.2Video Cameras154.2.3Mapping Using GPS154.2.3.1'Trigger' Levels for Initiating Field Inspections & GPS Surveys154.2.3.2GPS Mapping Procedures174.2.4Using Sand Flux Monitors to Map Source Area Boundaries194.3Composite Dust Source Map Development19 |

| 5.  | Protocol f  | or Determining K-factors and PM <sub>10</sub> Emission Rates from Sand Flux D | ata 19        |
|-----|-------------|-------------------------------------------------------------------------------|---------------|
|     | 5.1 Ob      | pjective                                                                      |               |
|     | 5.2 Me      | ethod for Determining PM <sub>10</sub> Emissions and New K-factors            |               |
|     | 5.2.1       | PM <sub>10</sub> Emission Flux = Sand Flux x K-factor                         |               |
|     | 5.2.2       | Default Temporal and Spatial Storm-average K-factors                          |               |
|     | 5.2.3       | Method to Determine Sand Flux from Areas with Implemented Dust                |               |
|     |             | Control Measures (DCM)                                                        |               |
|     | 5.2.4       | New Seasonal Cut-points                                                       |               |
|     | 5.2.5       | Using CALPUFF Modeling System to Generate New K-factors                       |               |
|     | 5.2.6       | Screening Hourly K-factors                                                    |               |
|     | 5.3 Te      | mporal and Spatial Event-specific K-factors                                   |               |
|     | 5.3.1       | Event-Specific K-factors                                                      |               |
|     | 5.3.2       | Temporal & Spatial 75-Percentile K-factors                                    |               |
|     | 5.3.3       | Default K-factors                                                             |               |
| 6   | Drotocol f  | or Dispersion Modeling                                                        | 25            |
| 0.  | 61  0       | or Dispersion Modeling Procedures and Pationale for Model Selection           |               |
|     | 62 M        | atographical Data Sat Construction                                            |               |
|     | 6.2 Mic     | LECTOTOGICAL Data Set Construction                                            |               |
|     | 0.5 CF      | akground <b>PM</b> <sub>10</sub> Concentrations                               |               |
|     | 0.4 Da      | explouid FMI0 Concentrations                                                  |               |
|     | 6.6 Ee      | timation of DM <sub>10</sub> Emissions                                        |               |
|     | 6.7 Sir     | mulation of Shoraline Concentrations                                          |               |
|     | 0.7 511     |                                                                               |               |
| Lis | t of Tables | S                                                                             | • •           |
| Tat | ole C.5.1   | Wind Directions for the K-factor Screen                                       |               |
| Tał | ole C.5.2   | Default Spatial and Temporal K-factors for the Dust ID Model                  | 24            |
| Lis | t of Figure | es                                                                            |               |
|     | 0           | Fo                                                                            | ollowing Page |
| Fig | ure C.1.1   | Owens Lake Dust ID monitoring network                                         | 2             |
| Fig | ure C.2.1   | Photo of sand flux monitoring site at Owens Lake                              | 6             |
| Fig | ure C.2.2   | Diagram of the Cox Sand Catcher (CSC)                                         | 7             |
| Fig | ure C.2.3   | Photo of CSC with Inner Sampling Tube Removed                                 | 7             |
| Fig | ure C.2.4   | Example of Linearity Between CSC Mass and Sensit Readings                     | 7             |
| Fig | ure C.2.5   | Height Adjustment Tool used to set sand flux inlets at 15 cm                  | 9             |
| Fig | ure C.2.6   | CSC and Sensit Field Documentation Form                                       |               |
| Fig | ure C.2.7   | Lab Form for sand catch mass measurement                                      | 11            |
| Fig | ure C.4.1   | Example of dust plume maps and total sand catch                               | 16            |
| Fig | ure C.5.1   | K-factor areas at Owens Lake                                                  |               |
| Fig | ure C.6.1   | Model Domain and 1-km Mesh Size Terrain (m)                                   |               |
| Fig | ure C.6.2   | Area Source Configuration Using 250-m x 250-m Cells                           |               |
| Fig | ure C.6.3   | Dust ID Model Receptor Locations                                              |               |

#### **Glossary of Terms and Symbols**

| ATV                          | All-Terrain Vehicle                                                    |
|------------------------------|------------------------------------------------------------------------|
| APCO                         | Air Pollution Control Officer                                          |
| AQS                          | US Environmental Protection Agency's Air Quality System                |
| BACM                         | Best Available Control Measure                                         |
| BACT                         | Best Available Control Technology                                      |
| CALMET                       | A meteorological preprocessor program for CALPUFF.                     |
| CALPUFF                      | An air pollution model                                                 |
| CARB                         | California Air Resources Board                                         |
| CSC                          | Cox Sand Catcher, a passive sand flux measurement device.              |
| DCA                          | Dust Control Area                                                      |
| DCM                          | Dust Control Measure                                                   |
| Dust ID Program              | Owens Lake Dust Source Identification Program                          |
| Event-specific $K_f$         | Weighted-average of hourly K-factors for a dust event, weighted by the |
| L V                          | hourly PM <sub>10</sub> concentration                                  |
| Exceedance                   | Modeled or monitored $PM_{10} > 150 \ \mu g/m^3$ at the shoreline      |
| GBUAPCD                      | Great Basin Unified Air Pollution Control District                     |
| GIS                          | Geographic Information System                                          |
| GPS                          | Global Positioning System                                              |
| KE                           | Kinetic energy                                                         |
| K-factor                     | Proportionality constant for sand flux and $PM_{10}$ emissions, $K_f$  |
| LADWP                        | City of Los Angeles Department of Water and Power (also City)          |
| m <sup>3</sup>               | cubic meter                                                            |
| met                          | meteorological                                                         |
| NAAQS                        | National Ambient Air Quality Standards                                 |
| PC                           | Particle count                                                         |
| $PM_{10}$                    | Particulate matter less than 10 microns aerodynamic diameter           |
| QA                           | Quality Assurance                                                      |
| RASS                         | Radio Acoustic Sounding System                                         |
| Sensit                       | An electronic sand motion detector.                                    |
| Settlement Agreement         | 2006 Settlement Agreement between LADWP and GBUAPCD                    |
| Storm-average K <sub>f</sub> | Arithmetic average of hourly K-factors for a dust event                |
| SCD                          | Sand-collecting type sand flux device (e.g., Cox Sand Catcher)         |
| SFM                          | Sand flux monitor                                                      |
| TEOM                         | Tapered-Element Oscillating Microbalance, measures PM <sub>10</sub> .  |
| TRD                          | Time-resolving type sand flux device (e.g., Sensit)                    |
| USEPA                        | United States Environmental Protection Agency                          |
| USGS                         | US Geological Survey                                                   |
| WD                           | Wind direction                                                         |
| μg                           | microgram                                                              |

# 2016 Owens Lake Dust Source Identification Program Protocol

#### 1. Program Overview

#### 1.1 Introduction

The objective of the Owens Lake Dust Source Identification (Dust ID) Program is to identify dust source areas at Owens Lake that can cause or contribute to violations of the National Ambient Air Quality Standards (NAAQS) for PM<sub>10</sub>. The Dust ID Program is a long-term monitoring program that is intended to identify dust source areas for control under the provisions of the BACM contingency measures in Attachment B of Board Order #160413-01.

#### **1.2** Locating Dust Source Areas

A network of sand flux samplers,  $PM_{10}$  monitors, meteorological towers and remote camera sites will be used to monitor and locate dust source areas at Owens Lake. Figure C.1.1 shows a map of the Dust ID network at Owens Lake as it existed at the end of 2015. At the discretion of the Air Pollution Control Officer (APCO), additional sand flux,  $PM_{10}$  and met sites will be added as necessary to collect information that can be used to monitor and model the impact from new areas that may become emissive on the lakebed.

The automated monitoring network will be augmented with information from observers who will map dust source locations from off-lake sites when dust events take place during normal work hours, additionally remote High Definition cameras will be used to observe and map emissive areas. These cameras will operate during all daylight hours, and dust observation maps will be created yearly. In addition to remote cameras, the District may use other remote sensing techniques to develop source area maps. These maps will be used to help document source areas that may be outside the sand flux network or that may be within the network, but missed by the samplers. Field personnel will inspect active source areas and map the source area boundaries using a GPS (Global Positioning System) or Unmanned Aerial Vehicles (UAVs) as conditions allow. Data collected from the sand flux network, visual mapping and GPS surveys will be included in a Geographic Information System (GIS) database for mapping and analysis. Maps generated using these different methods will be compared qualitatively to help delineate source area boundaries.

#### 1.3 Monitored Exceedances

Analysis of hourly  $PM_{10}$  concentrations at shoreline and off-lake monitoring sites may show that lakebed source areas cause or contribute to  $PM_{10}$  exceedances. Monitoring of  $PM_{10}$  concentrations will be done using US EPA-approved monitors. If a  $PM_{10}$  exceedance is monitored,  $PM_{10}$  concentrations will be paired with the local wind direction for each hour of that event to determine if lakebed source areas caused or contributed to the exceedance.



Figure C.1.1. Owens Lake Dust ID network map.

Twenty-four hour average  $PM_{10}$  monitor concentrations will be adjusted for winds coming from the direction of the lake to the monitor (from-the-lake) and from directions not from the lake to the monitor (non-lake).  $PM_{10}$  concentrations during any hour with winds from a non-lake wind direction will be assumed to have an average background concentration of  $20 \ \mu g/m^3$  and fromthe-lake wind directions will be given their hourly value. If the adjusted 24-hour average is greater than 150  $\mu g/m^3$ , then an exceedance will have been monitored from a lakebed source or sources.

If a lakebed source area causes or contributes to an exceedance, hourly  $PM_{10}$  concentrations and wind directions will be reviewed to see if a new source area (or areas) is associated with that exceedance. If sand flux data are available that show erosion activity in the direction of a new source area, this event will also be modeled as described in the air quality modeling protocol. If the  $PM_{10}$  monitor data indicate that a new source area caused or contributed to an exceedance, DCMs may be required.

#### 1.4 Modeled Exceedances

Air quality modeling will be performed with the CALPUFF modeling system or other United States Environmental Protection Agency (USEPA) approved modeling method. At least once a year, the Dust ID information will be examined and the model will be run to determine if there were any modeled shoreline exceedances since the period covered by the last model run.  $PM_{10}$  emissions for the model will be based on hourly sand flux measured at lakebed sites and spatial and temporal factors derived using the empirical relationship between sand motion on the lake bed and measured  $PM_{10}$  values. CALPUFF will be run using the following equation to estimate emissions and to model  $PM_{10}$  impacts at the shoreline:

Equation 1.1

$$PM_{10} = K_f \times q$$

where,

- q = Sand flux measured at 15 cm above the surface [g/cm<sup>2</sup>/hr]
- $K_f$  = K-factor, empirically-derived ratio of the PM<sub>10</sub> emission flux to the sand flux at 15 cm.

The ratio of  $PM_{10}$  to sand flux ( $K_f$ ) is referred to as the K-factor. The initial Dust ID program results showed that K-factors could be derived empirically by comparing model predictions to monitored  $PM_{10}$  concentrations. Initial studies also showed that average K-factors can vary spatially and seasonally at Owens Lake. Default K-factors will be used with Equation 1.1 to estimate hourly  $PM_{10}$  emissions unless new K-factors are generated from future dust events following the modeling procedures in this program protocol. If the CALPUFF model results indicate that a new lakebed source area caused or contributed to an exceedance at a shoreline location, additional dust controls may be required.

#### 1.5 Sand Flux Measurements

Sand flux is measured using a combination of sand-collecting type devices (such as Cox Sand Catchers (CSC)) and time-resolving type devices (such as Sensits). Sand-collecting devices (SCD) provide a mass collection amount for a certain time period (about 1 to 3 months). Time-resolving devices (TRD) are electronic sand motion detectors used to time-resolve the collected mass to estimate hourly sand flux rates. The sand flux rate is applied to the area represented by the sand flux sampling site, which may vary in size and shape depending on the source area delineated by field observations.

#### 1.6 Dust ID Program Protocol Content

Section 2 of the Dust ID Program Protocol describes the methods and instrumentation that will be used to monitor sand flux with Sensits and CSCs on the lakebed. Section 3 provides a brief description of the  $PM_{10}$  and meteorological monitoring network that will be used to monitor  $PM_{10}$  exceedances, develop K-factors and to call public health advisories. Section 4 describes methods that will be used by visual observers and field personnel to map lakebed dust source areas and delineate boundaries using GPS. Section 5 explains the procedures for developing K-factors using air quality modeling and monitoring data. Section 6 provides the protocol for dispersion modeling.

#### 2. Protocol for Measuring Sand Flux Rates

#### 2.1 Objective

Sand flux measurements will be used as a surrogate to estimate  $PM_{10}$  emissions coming off the lakebed. The objective of the sand flux measurements is to provide an hourly emissions estimate for all active source areas on the lakebed.

#### 2.2 Methods and Instrumentation

Sand flux will be measured with time-resolving devices (TRD), such as a Sensit, and sandcollecting devices (SCD), such as a Cox Sand Catcher (CSCs). Although the District has used the Cox SCD and Sensit TRD for many years, it continues to investigate other sand flux devices that could improve the accuracy and/or efficiency of its sand flux monitoring network. The District reserves the right to use alternative devices for measuring the mass and time resolution of sand flux. This protocol is based on the use of Sensits and CSCs. If other SCD or TRD units or systems are employed in the future, alternative procedures may be needed to utilize these devices for the purpose of determining sand flux rates from active erosion areas.

Collocated Sensits and CSCs are used to measure hourly sand flux rates at different locations on the lakebed. The 2014-15 Sensit/CSC monitor site locations are shown in Figure C.1.1. The instruments are placed with their sensors or inlets positioned 15 cm above the surface. Sensits are electronic sensors that measure the kinetic energy or the particle counts of sand-sized particles as they saltate, or bounce, across the surface. Sensits are used to time-resolve the CSC mass to provide hourly sand flux rates.

Figure C.2.1 shows a Sensit suspended above the ground on the right, and a CSC in the ground to the left. The photo was taken at a site that was used to test the accuracy of Sensits and CSCs before the Dust ID Program began. The battery powered Sensits are augmented with a solar charging system. A datalogger records 5-minute Sensit data during active saltation periods. Data collection is triggered by particle count activity and continues until particle counts are zero for an hourly period. Each datalogger has a radio transmitter that sends Sensit data to the District's Keeler field office once a day to provide updates on erosion activity at each site. These daily updates are used to alert field personnel to active source areas for possible mapping and inspection. Daily transmission of the data may be temporarily suspended if the solar battery power is low due to extended days of cloud cover.

CSCs are passive collection instruments that capture windblown, sand-sized particles. The Cox Sand Catcher type SCD was designed and built by the District as a reliable instrument that could withstand the harsh conditions at Owens Lake. CSCs have no moving parts and can collect sand for a month or more at Owens Lake without overloading the collectors. Field personnel periodically visit CSC sites to collect the sampling tubes, which are then taken to a lab to measure the collected mass. A diagram of the Cox Sand Catcher SCD is shown in Figure C.2.2. Not shown in the diagram is an internal sampling tube that can be seen in the photo in Figure C.2.3. The internal sampling tubes and casings are adjusted during construction to accommodate the amount of sand flux expected in each area and to avoid overloading the CSC. The CSC length ranges from about one to three feet. Because the PVC casing is buried in the ground, an adjustment sleeve is used to keep the inlet height at 15 cm to compensate for surface erosion and deposition. Field techs use a standardized measuring device to check or adjust the sampling inlets to 15 cm after collecting each sample.

Figure C.2.4 shows an example of the linear relationship between the CSC collected sand mass and the kinetic energy measured with a co-located Sensit. Sensits measure saltation in terms of kinetic energy (KE) and particle count (PC). The District uses the output (KE or PC) that provides the best precision and accuracy for the range of saltation activity expected at each site.

Because the electronic Sensit response to the saltation flux can vary, Sensits were used in combination with CSCs to determine hourly sand flux rates. This combination takes advantage of the good precision and accuracy of the CSC sand catch data, and the ability of Sensits to time-resolve the sand flux for each hour of the CSC sampling period. In this way, the sum of the hourly sand catches always matches the CSC sand catch for each sampling period, and it minimizes the error in the hourly sand flux.

Changes to the sand flux monitoring network are made as necessary to improve the characterization of dust source areas on the lakebed. Sand flux sampler sites are added to the network to monitor new source areas or to improve the sand flux estimates for known dust source areas. Although the sand flux network was originally designed in a fixed grid pattern with 1 km site spacing, the current practice is to place the samplers at sites that represent smaller source areas. Some sites may be less than 250 m apart, and their locations may be off the regular grid pattern to better represent sand flux activity in the dust source area. In addition, many of the



Figure C.2.1 - Dust ID sand flux monitor sites measure wind erosion activity using CSCs to collect sand-sized particles and Sensits that electronically detect moving particles. Sensit data are recorded on dataloggers and transmitted by radio from each site to the District's office in Keeler.

Figure C.2.2 - Diagram of the Cox Sand Catcher (CSC) used to measure sand flux at Owens Lake.



Figure C.2.3 - Example of a Cox Sand Catcher (CSC) with the inner sampling collection tube removed.





Figure C.2.4 - Example of the linearity between CSC mass and a Sensit reading using kinetic energy reading (Sensit No. 7291).

original sampling sites that are now in flooded portions of the shallow flood DCM were removed, since  $PM_{10}$  emissions from the flooded sites can be assumed to be zero in the Dust ID model.

#### 2.3 **Operating Procedures**

Sand captured in the CSCs will be weighed by the District to the nearest tenth of a gram. A field technician will visit each site every one to four months, or sooner if analysis of data indicates a collection of sample tubes is required. The following procedures will be used when collecting the CSC samples and downloading Sensit data:

- 1. Park field vehicle 10 meters or more east of the site and walk the remaining distance to the sampling site. Field personnel will access all Sensit and CSC sites from an easterly approach to minimize upwind surface impacts near the sampling sites.
- 2. Measure and record the CSC inlet height above the surface to the middle of the inlet.
- 3. Remove the sample collection tube from the CSC.
- 4. Seal the collection tube, write the site number and collection date on the tube and place the tube in the rack for transport to the lab.
- 5. Place a clean collection tube in the CSC.
- 6. Replace the CSC inlet and adjust the height to  $15 \text{ cm} (\pm 1 \text{ cm})$ .
- 7. Measure and record the Sensit sensor height above the surface to the center of the sensor and adjust if necessary to 15 cm. See Figure C.2.5.
- 8. Inspect the sensor and radio transmitter wiring and clean or repair, if needed.
- 9. A field operational response test on the Sensit will be completed during each visit and the Sensit will be replaced, if it fails the test.
- 10. CSC samples will be removed from the sample collection tubes and weighed on a calibrated bench-top scale to the nearest 0.1 gram.
- 11. Wet samples will be removed from the collection tubes and oven dried before weighing in the lab.

#### 2.4 Data Collection

A cloud based form will be used to document the information for the CSC and Sensit (see example in Figure C.2.6). The form will have the site number, date, start and end time of visit (Pacific Standard Time), "as is" CSC inlet and Sensit sensor height  $(\pm 1 \text{ cm})$ , Sensit response test (particle counts or kinetic energy), operator's initials, and a comments section where the condition of the sampler and any other relevant factors, such as surface condition will be documented. The District's Data Processing Department will calculate the net sand catch weight from the CSC during data analysis. CSC lab weights, measured to the nearest 0.1 g will be recorded on the Lab Form shown in Figure C.2.7. The completed forms will be stored on a secure computer system and the data will be analyzed by Data Processing in the Bishop office to calculate hourly sand flux at each site.

Each day, dataloggers for all Sensit sites will be downloaded by radio transmission to the Keeler Field office. The radio transmitted Sensit data will be used as the data of record.



Figure C.2.5 - A Height Adjustment Tool is used to measure the height of Sensits and CSCs and to adjust the sensor and inlet height to 15 cm above the soil surface.

| GBUA<br>Current<br>Current Server<br>Current Device<br>Current                                                                                      | <b>PCD</b><br>User: chris how<br>Time: 10/28/201<br>Time: 10/28/201<br>Jday: 301                                                                           | Sen<br>5 2:17:14<br>5 3:14 PM            | PM<br>Record                                    | t<br>number: 1559                                    |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------|------------------------------------------------------|--|--|
| Technician<br>Date<br>Start Time<br>Site<br>Sensit Tap                                                                                              | Jamie John<br>10/12/2015<br>10:30:14 AA<br>3043<br>Tested: Yes                                                                                             | nson<br>Λ<br>Tap                         | (Jday                                           | 285)<br>Now<br>No Tap                                |  |  |
| Efflores<br>Abrade<br>Friable<br>Heaved                                                                                                             | Surface Description  Efflorescent Puffy Uplifted  Abraded Scoured Vegetation Silts Friable Pitted Moist Cauliflower Heaved Fluffy Sandy Smooth Cemented    |                                          |                                                 |                                                      |  |  |
| Surface Hardness Marble Test<br>0 - No crust<br>1 - Complete damage<br>2 - Surface damage<br>3 - No damage<br>4 - Wet                               |                                                                                                                                                            |                                          |                                                 |                                                      |  |  |
| Maintenance<br>Tube cha<br>Manual d<br>Cabling o<br>Cabling r<br>Power cy<br>Power cy<br>Vegetation<br>Remote<br>Site remon<br>Replaced<br>Replaced | Sensit swap<br>ownload<br>lamaged<br>eplaced<br>rcle on logger<br>rcle on radio<br>on removed<br>telemetry visi<br>oved<br>I radio<br>I modem<br>I antenna | <u>Charging.</u><br>Tut<br>P<br>Fir<br>I | oe len<br>re Sen<br>hal Sen<br>Pre (<br>Final ( | site Install<br>gth 1<br>nsit 15<br>CSC 15<br>CSC 15 |  |  |
| Replaced ser                                                                                                                                        | Comm                                                                                                                                                       | ents                                     |                                                 |                                                      |  |  |

Figure C.2.6. CSC and Sensit Electronic Field Documentation Form.



Figure C.2.7. CSC Electronic Lab Form.

The electronic sand flux form will be a log of all the repairs, maintenance, or replacement of Sensits or CSCs, radio transmitters, and datalogger equipment.

#### 2.5 Quality Assurance

All lab scales will be checked at least every two months using Class F weights. The bench-top scale in the District lab will be checked with the Class F weights before each set of sand catches are weighed. The test weights will be recorded on the scale log sheet in the laboratory. Lab scales will be calibrated and certified at least once every year. Ten percent of the CSC sand catch samples will be stored for at least one year from the date of collection before discarding.

#### 2.6 Calculating Hourly Sand Flux

For modeling purposes discussed in Section 6, hourly sand flux is calculated for each Sensit/CSC site using the sand catch to Sensit reading ratio for each collection period and apportioning the sand catch to the hourly Sensit reading. The hourly sand flux is divided by 1.2 cm<sup>2</sup>, which is the equivalent inlet opening size of the CSC for flux calculation purposes.

For Sensits using kinetic energy,

Equation 2.1

$$q_{n,t} = (S_{n,t} - S_{n,bg}) \times \frac{CSC_{n,p}}{\sum_{t=1}^{N} (S_{n,t} - S_{n,bg})} \times \frac{1}{1.2}$$

Where,

 $q_{n,t}$  = hourly sand flux at site n, for hour t [g/cm<sup>2</sup>/hr]  $CSC_{n,p}$  = CSC mass for site n, for collection period p [g]  $S_{n,t}$  = Sensit total KE reading for site n, for hour t [non-dimensional]  $S_{n,bg}$  = Sensit KE background reading for site n, [non-dimensional] N = Total number of hours in CSC collection period p.

For Sensits using particle count,

Equation 2.2

$$q_{n,t} = S'_{n,t} \times \frac{CSC_{n,p}}{\sum_{t=1}^{N} S'_{n,t}} \times \frac{1}{1.2} q_{n,t} = S'_{n,t} \times \frac{CSC_{n,p}}{\sum_{t=1}^{N} S'_{n,t}} \times \frac{1}{1.2}$$

Where,

#### $S'_{n,t}$ = Sensit total PC reading for site n, for hour t [non-dimensional]

#### 2.7 Sensit Calibration and Data Analysis

2.7.1 Sensit Calibration Check

Data Processing will track Sensits by their serial number. After each sample collection period, Sensit and CSC data will be added to data from other sample collections. Data Processing will determine the average sand catch to Sensit ratio for each Sensit. Sensit readings will be collected for particle counts and kinetic energy for each Sensit. Due to differences in individual Sensit responses, some Sensits have a more consistent sand flux to Sensit reading ratio using particle count rather than kinetic energy. This normally depends on the manufacturer's electronic design. At high sand flux sites, kinetic energy provides a more linear response for most Sensits. If KE is used, a background KE is subtracted from the reading if it is not zero. A background KE is determined from the KE reading when the PC reading is zero.

The ratio of the Sensit response to the collected mass will be compared for each collection period to previous ratios for the same instrument to ensure that the Sensit is responding consistently. As seen in Figure C.2.4 this ratio can vary, especially at low collection masses, so large deviations in the ratio should only be used as an indicator for a possible problem. Sensits will be replaced if

they show no readings with significant sand associated CSC collection, have significant readings during calm wind periods, have an erratic response as compared to previous collection periods, or if they fail the field operational response test.

#### 2.7.2 Replacing Missing Sand Catch Data

Sand catch data can be lost if the CSC collector is full, or damaged, or if the sample is spilled during weighing. The lost sand catch data will be estimated using Sensit data. A cumulative sand catch to Sensit ratio is calculated by adding all of the valid sand catches and all of the corresponding Sensit data for that particular Sensit/CSC pair, and then dividing them to obtain the total ratio. The cumulative ratio is applied to the Sensit data to estimate the hourly sand flux. If there was a Sensit change, only data generated after the Sensit change is used to calculate the cumulative sand catch to Sensit ratio.

CSC collection tubes will be collected and replaced at the same time as any Sensit change at a site in order to maintain the time correlation between the two devices.

#### 2.7.3 Replacing Missing Sensit Data

Sensit data can be lost when the datalogger or Sensit fails. In such cases, the sand catch data will be time resolved using a neighboring site. The historical hourly sand flux data are compared to determine which neighboring site behaves most similarly to the site with the lost data. The correlation coefficients between the data sets will be used to determine which site behaves most similarly. If no adjacent sites were active during the period of lost Sensit data, then the nearest active sites will be used for comparison.

#### 3. Protocol for Measuring Ambient PM<sub>10</sub> and Meteorological Conditions

#### 3.1 Objective

Ambient  $PM_{10}$  monitors will be placed at locations generally around the shoreline of Owens Lake and in local communities to monitor the ambient air for exceedances of the  $PM_{10}$  NAAQS and to develop K-factors for modeling  $PM_{10}$  emissions from lakebed sources.  $PM_{10}$  monitors placed on the lakebed for monitoring dust control areas may also be used as upwind and downwind monitors for the Dust ID Program.

#### 3.2 Methods and Instrumentation for PM<sub>10</sub> and Meteorological Data

 $PM_{10}$  monitoring will be performed using USEPA-approved reference or equivalent method monitors. The 2014-15 monitoring network in Figure C.1.1 shows the location of  $PM_{10}$  monitors on the shoreline at a two sites on the lakebed. Each  $PM_{10}$  site is equipped with an EPA-approved reference or equivalent  $PM_{10}$  monitor. Monitors used in the Dust ID Program must be capable of measuring hourly  $PM_{10}$  concentrations. The Dust ID Program will rely on the continuous monitors on the shoreline to determine if an exceedance is caused by a lakebed source, since the data can be correlated with hourly wind directions to determine dust source directions. Continuous  $PM_{10}$  data will also be used to generate K-factors to model the  $PM_{10}$  emissions from lakebed sources.

Ten-meter meteorological towers will be located near each  $PM_{10}$  monitor site and at other locations around the lakeshore and on the lakebed. The 2014-15 met site network is shown in Figure C.1.1. The met data are used to create wind fields with the CALMET model that are used with CALPUFF to model air quality impacts. All met towers include instrumentation to measure wind speed and wind direction. Met sites may also measure wind speed at different heights (0.5, 1, 2, 5 and 10 m) to determine surface roughness and vertical wind speed profiles. Met sites may also measure temperature, relative humidity, barometric pressure, and/or precipitation.

#### 3.3 Operating Procedures, Instrument Calibration and Quality Assurance

 $PM_{10}$  monitoring will be performed in accordance with USEPA monitoring guidelines found in 40 CFR, Part 58 and meteorological monitoring will be performed in accordance with USEPA Quality Assurance Handbook for Air Pollution Measurement Systems, Volumes I, II, and IV.

#### 3.4 Data Handling and Data Access via Modem

TEOM  $PM_{10}$  data will be delivered to Data Processing on a routine monthly schedule. After the data pass the proper data review and QA checks they will be submitted to the USEPA's AQS database.  $PM_{10}$  data from special-purpose monitors that may be located on the lakebed will not be submitted to the AQS database.

All the  $PM_{10}$  sites and met sites are equipped with modem links that allow for access to the hourly concentration and wind data. These data are useful for alerting field personnel to possible new sources of  $PM_{10}$ , and for alerting the public in case of high concentrations. For hourly concentrations above 400  $\mu$ g/m<sup>3</sup> the District will issue public health advisories when the communities of Keeler, Lone Pine or Olancha are affected. The public can view real-time wind speed, direction and  $PM_{10}$  data from the Dust ID monitoring network on the District's website at www.gbuapcd.org/data.

#### 4. Protocol for Observing and Mapping Source Areas and Dust Plume Paths

#### 4.1 Objective

The objective for source area mapping is to use the best available information from visual observations, GPS mapping, and sand flux measurements to delineate the boundaries of dust source areas for as many events as possible. This information will be used to help delineate the control area boundaries for new sources.

#### 4.2 Methods and Instrumentation

In late 2015, the Dust ID Program included four methods to help locate dust source areas and to delineate the source area boundaries. The methods were: 1) visual mapping by trained observers,

2) time-lapse cameras, 3) surface inspections with GPS mapping, and 4) sand flux activity (as measured with Sensits and CSCs).

Two additional methods of delineating source areas were under development in 2015 that utilize the Induced Particulate Erosion Test (IPET) method to locate dust source areas, as well as aerial mapping using a small UAV. The IPET is approved for use to test the emissivity of a surface in order to determine if areas controlled by tillage with shallow flood BACM back-up need to be reflooded. The IPET and aerial mapping can be used together to accurately determine emissive boundaries. If the APCO approves the methods for use at Owens Lake for delineating source area boundaries it will be incorporated into this Dust ID Program Protocol.

#### 4.2.1 Mapping Dust Source Areas from Off-Lake Observation Sites

One or more trained observers will complete observations from viewpoints to best observe the active dust source areas. For instance, two observers may be at viewpoints on the east side of the dust plume in the Inyo and Coso Mountains and a third may be on the west side in the Sierra. The observers will create hourly maps of the visible boundaries of any dust source areas, their plume direction and note if the visible plume crosses the shoreline. To the extent practicable, all lakebed and off-lake dust sources will be included in the observations. Figure C.4.1 shows an example of sand flux measurements and the cumulative information that can be collected by observers mapping the dust plumes from different locations.

#### 4.2.2 Video Cameras

Remote time-lapse video cameras will record dust events during daylight hours. This information will be reviewed to help identify source areas that may have been missed by observers, or to help confirm source area activity detected by  $PM_{10}$  monitors or the sand flux network. Remote time-lapse video can also be used to help verify modeled impacts that were not monitored by the  $PM_{10}$  network, to check compliance of dust control areas, and to identify off-lake sources not measured by any of the other methods. Additionally a method known as TIG (Terrestrial Image Georefferencing) has been developed that uses these remote HD cameras to map source areas. The advantage of using TIG is that the cameras run during all daylight hours regardless if Keeler personnel are working. This allows the data to be looked at any time, as well as repeated analysis can be done if any questions arise.

#### 4.2.3 Mapping Using GPS

#### 4.2.3.1 "Trigger" Levels for Initiating Field Inspections and GPS Surveys

Dust observations, Sensit activity, elevated  $PM_{10}$  concentrations and video will be used as "trigger data" to determine the time and location for a Dust Source Area Survey (survey). Sensit and  $PM_{10}$  data will be automatically collected via radio transmission every workday. A technician will summarize and review the data each workday. The summary will list all Sensit activity greater than background output levels, and hourly TEOM  $PM_{10}$  concentrations over 50  $\mu g/m^3$  with corresponding wind speed and direction data. If dust observations are available from a recent dust storm, they will be used to confirm the location of the dust source(s) that



Figure C.4.1 - Example of dust plume maps drawn by observers during daylight hours and total sand flux for a dust event on February 6-8, 2001.

correspond with the Sensit activity and elevated  $PM_{10}$  concentration. Video will be used to identify a source or sources that were not identified by observations, Sensit data or  $PM_{10}$  information. Wind speed and wind direction data will be used to help determine if a lakebed dust source could have caused elevated  $PM_{10}$  concentrations. All of the trigger information will be used to identify any lakebed dust source area to initiate a dust source survey and/or surface inspection. The survey should be completed the same day if weather conditions are favorable. For larger areas, surveying may continue for several days or until precipitation obscures the boundaries of the source area.

In addition to the above process, general field inspections will be completed after dust storms to verify lakebed emission activity and the need for a survey. A survey will be completed if the trigger data and /or field inspections indicate emissive conditions in an area that has not been previously surveyed during the current dust period (Section 4.3) or in an area that has been previously surveyed but has increased in size since its last survey. The priorities for completing a survey are:

- 1) new lakebed source areas outside the instrumented Sensit network;
- 2) new lakebed source areas that have not been surveyed within the instrumented Sensit network; and
- 3) lakebed source areas that have previously been surveyed.

#### 4.2.3.2 GPS Mapping Procedures

After a dust source is identified by dust observation, Sensit data, sand catch data, video, PM<sub>10</sub> concentration or inspection of the lake bed surface, District staff will map the exterior boundary of as many of the source areas identified as possible during daylight hours, as weather conditions allow. The mapping will begin as soon as possible after a dust storm and continue until all the identified areas are mapped or precipitation occurs. The boundary of the emissive area(s) will be mapped using a Global Positioning System (GPS). Surveyors conducting the mapping will ride an ATV or walk around the outer boundary of the wind-damaged surface surveying a line with the GPS. A wind-damaged surface is defined as a soil surface with wind erosion evidence and/or aeolian deposition that has not been modified to an unrecognizable point by precipitation since the last identified dust storm.

GPS line data should be collected at an interval of one record every 10 seconds or less. Data should be collected in NAD83 UTM Zone 11 coordinates. Only GPS units capable of continuously recording line data will be used. Data should be processed and corrected using base station data (either from a commercial correction service or using data from the District's Keeler base station) to ensure positional accuracy.

Before beginning a survey, the edge of the source area is determined by a visual review of the surface conditions within a representative one square meter area along the edge of the source area. An undamaged surface is evident if there is no visible evidence of a disturbed lakebed surface due to wind damage. As an aid to calibrate the level of disturbed surface, a surveyor will

begin each survey by estimating the percentage of surface that is undamaged by the wind. The surveyor visually determines where a surface with 70 to 80 percent of undisturbed surface is located. The surveyor completes the survey by following a line of travel that closely represents the initial one-meter calibration. The following defined list, Boundary Conditions and Survey Procedures (see below), can be used to determine how to map the source boundary under differing surface boundary conditions.

#### **Boundary Conditions and Survey Procedures:**

| <b>Distinct Boundary:</b> | A visibly sharp transition, 25 feet or less in width, between a wind-   |
|---------------------------|-------------------------------------------------------------------------|
|                           | damaged lakebed surface and an undamaged lakebed surface. The           |
|                           | surveyor should travel directly along this distinct outside edge, if    |
|                           | possible, and may deviate 25 feet to the inside or outside on occasion. |
|                           | Small (25-foot wide or less) channels, boundary indentations, roads,    |
|                           | mounds, and other obstacles may be directly crossed if the              |
|                           | continuation of the main source boundary is clearly visible on the      |
|                           | opposite side.                                                          |
|                           | 11                                                                      |

**Diffuse Boundary:** A visibly distinct transition, 25 to 100 feet in width, between a winddamaged lakebed surface and an undamaged lakebed surface. Every effort should be made to travel along the outermost edge of the visible distinction.

**Indistinct Boundary:** A boundary that is not obvious to the surveyor where the edge of the source is located. Mapping would be stopped at this point until a Distinct or Diffuse Boundary can be located.

Generally the surveyor will maintain a constant course of travel following the Distinct Boundary of the wind-damaged area. As the boundary becomes less distinct, it is recommended to move the course of travel further into or outside the source to maintain recognition of surface damage. It is acceptable to travel within approximately 50 feet of the outer or inner edge of the larger more noticeable active area if the boundary is Diffuse. When encountering an Indistinct Boundary condition, the surveyor should note if the boundary can be found or if the boundary cannot be mapped during the existing survey and why. If the boundary cannot be mapped, the survey shall end at that point leaving an unclosed source area polygon.

It is possible for the surveyor to find himself or herself greater than 50 feet within or outside of the source area boundary. When this happens, the surveyor should turn perpendicular to the direction they were traveling and travel in the direction where the distinct edge should be located. For example, if the surveyor were inside the source area, they would turn in the direction where erosion evidence was not observed earlier along their path. If the surveyor were outside the source area, they would turn toward the side where they previously observed the source. Boundary loss may occur because of an Indistinct Boundary or unfavorable lighting conditions. The time and coordinates should always be noted when it is necessary to relocate the boundary during a survey.

Another alternative for relocating a source area edge is to pause the GPS unit from recording data until the boundary is located and then resume with data collection. This allows the surveyor to travel in any direction until the edge is relocated or end the survey if an edge cannot be located. The line produced between the point where the GPS unit was paused and then restarted would be deleted and considered un-surveyed during post processing.

The presence of Indistinct Boundaries or conditions that cause the ending of a survey must be annotated on the GPS data or explained in the field notes, including point coordinates. Examples would include dust storm, precipitation, lightning, mud, and channel with flowing water, pond, and time constraint or equipment malfunction.

#### 4.2.4 Using Sand Flux Monitors to Map Source Area Boundaries

Dust source area boundaries can be delineated or refined using default cell boundaries represented by active sand flux monitors. The area represented by the active SFM site may be shaped to exclude known non-emissive areas, such as; DCM areas, wetlands, or areas with different soil texture where there is evidence that it is non-emissive.

#### 4.3 Composite Dust Source Map Development

Data Processing will compile the cumulative mapping information from the visual observers and field inspections using the GPS into a GIS database for two periods each year, December through June and July through November. Weather anomalies (late or early winter precipitation) may dictate modifying these time periods. The APCO will have sole discretion as to the selection of the mapping periods. A new composite map will be developed for each period containing only those data collected during that period. Observation maps will be input into the GIS database. Observation maps will be compared with source area locations from other methods through the GIS generated layers. Overlays of the maps generated from sand flux monitors, video cameras, visual observers and GPS'd source areas will be compared qualitatively, considering the information may have been collected at different times.

#### 5. Protocol for Determining K-factors and PM<sub>10</sub> Emission Rates from Sand Flux Data

#### 5.1 Objective

The objective of this portion of the Dust ID Program is to estimate the  $PM_{10}$  emission flux for each cell or source area using the relationship  $PM_{10}$  emission flux = sand flux x K-factor.  $PM_{10}$  emissions for each area will be used with the CALPUFF modeling system or other USEPA approved model to determine if the  $PM_{10}$  emissions will cause or contribute to a NAAQS violation at the shoreline.

#### 5.2 Method for Determining PM<sub>10</sub> Emissions and New K-factors

#### 5.2.1 PM<sub>10</sub> Emission Flux = Sand Flux x K-factor

 $PM_{10}$  emissions will be estimated using the sand flux for each area represented by a Sensit and CSC and an appropriate K-factor for the area and period. The sand flux values will come from the Sensit and CSC data as discussed in Section 2. New K-factors for each area and period will be developed as discussed in this section, and default K-factors will be used to model dust events unless newer K-factors are determined.

#### 5.2.2 Default Temporal and Spatial Storm-average K-factors

 $PM_{10}$  emissions may be estimated from default K-factors that were developed from previous dust events that occurred in the same area and the same range of calendar months in previous years.

The areas for K-factor groupings are shown in Figure C.5.1: Northwest Area, Northeast Area, Keeler, Central Area, Keeler Dunes, Managed Vegetation and the South Area. Any new source area within the depicted boundaries will be associated with that area for the spatial grouping of new K-factor values. If a new source area and K-factor is developed for an area outside these boundaries, the area and default K-factor will be associated with the K-factor for an existing area with the most similar surface soil texture. The determination of the most similar existing area will be made by the Air Pollution Control Officer.

## 5.2.3 Method to Determine Sand Flux from Areas with Implemented Dust Control Measures (DCM)

Sand flux will be measured at sites within the DCAs. Sensits and CSCs will be sited on dry areas within the shallow flood DCM to represent dry areas near the site. DCM areas covered with standing water will be assumed to have zero sand flux. For the Managed Vegetation DCM, sand flux sites will be placed in spatially representative areas and in areas within the DCM where windblown dust may have been previously observed.

5.2.4 New K-factors Seasonal Cut-points

The APCO will review the K-factor data and select seasonal cut-points by reviewing temporal trends in the K-factor values for each area.

#### 5.2.5 Using CALPUFF Modeling System to Generate New K-factors

New hourly K-factors can be inferred from the CALPUFF model by using hourly sand flux as a surrogate for  $PM_{10}$  emissions. Modeled  $PM_{10}$  predictions can then be compared to monitored concentrations at  $PM_{10}$  monitor sites to determine the K-factor that would correctly predict the monitored concentration for each hour. More information on the modeling procedures is included in Section 6.





A K-factor of 5 x  $10^{-5}$  will be used initially to run the CALPUFF model and to generate concentration values that are close to the monitored concentrations. Hourly K-factor values will then be adjusted in a post-processing step to determine the K-factor value that would make the modeled concentration match the monitored concentration at the PM<sub>10</sub> monitor site. The initial K-factor will then be adjusted using Equation 5.2.

Equation 5.2

$$K_f = K_i \left( \frac{C_{obs.} - C_{bac.}}{C_{mod.}} \right) \quad K_f = K_i \left( \frac{C_{obs.} - C_{bac.}}{C_{mod.}} \right)$$

Where,

 $K_i$  = Initial K-factor (5 x 10<sup>-5</sup>)  $C_{obs.}$  = Observed hourly PM<sub>10</sub> concentration. [µg/m<sup>3</sup>]  $C_{bac.}$  = Background PM<sub>10</sub> concentration  $C_{mod.}$  = Model-predicted hourly PM<sub>10</sub> concentration. [µg/m<sup>3</sup>]

#### 5.2.6 Screening Hourly K-factors

K-factors will be calculated for every hour that has active sand flux in cells upwind from a  $PM_{10}$  monitor. These hourly K-factors will be screened to remove hours that did not have strong source-receptor relationships between the active source area (target area) and the downwind  $PM_{10}$  monitor. For example, the screening criteria will exclude hours when a  $PM_{10}$  monitor site is located on the edge of a dust plume. Because the edge of a dust plume has a very high concentration gradient, a few degrees error in the plume direction could greatly affect the calculated K-factor. The APCO may also eliminate hours with other anomalous conditions that could affect the source-receptor relationship, such as sources of PM not associated with wind erosion.

The following general criteria will be used to screen the hourly K-factors:

- 1) Wind speed is greater than 5 m/s at 10 m height at any network site.
- 2) Hourly modeled and monitored  $PM_{10}$  concentrations were both greater than 150  $\mu$ g/m<sup>3</sup> at the same monitor-receptor site.
- 3) Hourly wind direction for each monitor site. The hourly wind directions for the monitors in place at the end of 2015 are shown in Table 5.1.
- 4) At least one sand flux site located within the target area and within a 30-degree upwind cone has sand flux greater than  $0.5 \text{ g/cm}^2/\text{hr}$ .

- 5) More than 65 percent of the PM<sub>10</sub> contribution at a monitor site came from the target source area (Northeast, Northwest, Keeler, Central, Managed Vegetation, South Area, and Keeler Dunes).
- 6) Eliminate hours when upwind and downwind sites located less than 15 km from a target source area show the upwind PM10 concentration is more than 50% higher than the downwind monitor concentration.

The from-the-lake wind directions for the initial K-factor screening criterion 3) for the monitors in place at the end of 2015 are shown in Table C.5.1. From-the-lake wind directions for any new  $PM_{10}$  sites will be determined by the APCO as needed for the K-factor screen. Note that 'From-the-Lake' wind directions for assessing the lakebed impacts at  $PM_{10}$  monitor sites in Attachment B to BO #160413-01 are different from these K-factor screening wind directions.

Hourly K-factors that pass through the screening criteria will be used to develop new eventspecific spatial K-factors, and new 75-percentile hourly average temporal and spatial K-factors, if enough K-factors are available.

| PM <sub>10</sub> Monitor Site | From-the-Lake<br>Wind Direction (Degrees) |  |  |
|-------------------------------|-------------------------------------------|--|--|
| Lone Pine                     | 110 <u>&lt;</u> WD <u>&lt;</u> 190        |  |  |
| Keeler (without Dunes)        | 135 <u>&lt;</u> WD <u>&lt;</u> 310        |  |  |
| Keeler (with Dunes)           | 135 <u>&lt;</u> WD <u>&lt;</u> 345        |  |  |
| Shell Cut                     | WD≥210 or WD≤50                           |  |  |
| Dirty Socks                   | WD≥220 or WD≤65                           |  |  |
| Olancha                       | WD≥320 or WD≤55                           |  |  |
| Bill Stanley                  | WD $\geq$ 335 or WD $\leq$ 245            |  |  |
| Lizard Tail                   | 115 <u>&lt;</u> WD <u>&lt;</u> 305        |  |  |
| North Beach                   | 40 <u>&lt;</u> WD <u>&lt;</u> 265         |  |  |
| Mill Site                     | 140 <u>&lt;</u> WD <u>&lt;</u> 350        |  |  |
| New and Portable Sites        | TBD                                       |  |  |

#### Table C.5.1 – Wind Directions for the K-factor Screen

#### 5.3 Temporal and Spatial Event-specific K-factors

#### 5.3.1 Event-Specific K-factors

Screened hourly K-factors will be used to generate event-specific K-factors for the active source areas. The event-specific K-factor will be calculated as the arithmetic average using all the hours when the hourly K-factor passes the screening criteria for the target area. Three or more screened hourly K-factor values during a 48-hour period are needed to calculate an event-specific K-factor for an active area.

#### 5.3.2 Temporal & Spatial 75-Percentile K-factors

The statistical 75-percentile value will be determined from the distribution of the hourly K-factors that pass the screening criteria for that area and period, whenever there are nine or more hourly K-factors. The 75<sup>th</sup> percentile will be calculated using the Microsoft Excel PERCENTILE function. The Microsoft Excel PERCENTILE function works by sorting values from lowest to highest, then assigns the 0<sup>th</sup> percentile is the lowest value, the 100<sup>th</sup> percentile is the largest value, and the values in between as (k-1)/(n-1) where n is the number of data values in the list and k is index of the k<sup>th</sup> lowest value in the list. Thus, each value is placed 1/(n-1) apart. If a requested percentile does not lie on a 1/(n-1) step, then the PERCENTILE function linearly interpolates between the neighboring values.

5.3.3 Default K-factors

Table C.5.2 shows the 2015 default K-factors for each of the K-factor areas and periods. These default values are based on K-factors from previous Dust ID model runs and may be modified by the APCO based on new model results that show changes in K-factor values for these areas.

| K-factor Area      | K-factor<br>JanApr. &<br>Doc | K-factor<br>May-Nov.   |
|--------------------|------------------------------|------------------------|
| Keeler Dunes       | 2.5 x 10 <sup>-5</sup>       | 2.5 x 10 <sup>-5</sup> |
| Keeler             | 2.2 x 10 <sup>-5</sup>       | 2.2 x 10 <sup>-5</sup> |
| Northwest Area     | 17.6 x 10 <sup>-5</sup>      | 6.6 x 10 <sup>-5</sup> |
| Northeast Area     | 21.2 x 10 <sup>-5</sup>      | 6.0 x 10 <sup>-5</sup> |
| Central Area       | 18.1 x 10 <sup>-5</sup>      | 5.3 x 10 <sup>-5</sup> |
| Managed Vegetation | 4.0 x 10 <sup>-5</sup>       | 4.2 x 10 <sup>-5</sup> |
| South Area         | 7.4 x 10 <sup>-5</sup>       | 4.3 x 10 <sup>-5</sup> |

| Table | C.5.2 -      | Default S | natial and  | Tempora      | l K-factors  | for the | Dust ID | Model |
|-------|--------------|-----------|-------------|--------------|--------------|---------|---------|-------|
| Iunic | <b>U.U.H</b> | Delaute   | patial allo | i i cimpor a | I IX Incluib | ior une | Dust ID | mouch |
### 6. Protocol For Dispersion Modeling

This section of the *Protocol* discusses the dispersion model methods planned for the simulation of windblown dust at Owens Lake using data from the Dust ID Program. The modeling techniques will be used both diagnostically to infer emission rates for source areas and prognostically to predict  $PM_{10}$  concentrations at the regulatory shoreline. Following an overview of the modeling approach, the remainder of this section discusses construction of the meteorological data set, dispersion model options, background concentrations and source area characterization.

### 6.1 Overview of Modeling Procedures and Rationale for Model Selection

The CALPUFF modeling system has been selected for continuing studies in the Dust ID Program. CALPUFF is the USEPA recommended modeling approach for long-range transport studies and USEPA has approved the use of CALPUFF in their *Guideline on Air Quality Models* (40 CFR Part 51, Appendix W). EPA has found that the CALPUFF modeling system is applicable to near-field dispersion problems where the three-dimensional qualities of the wind field are important and for stagnation episodes when pollutants remain within the modeling domain over periods of several hours or more. CALPUFF is appropriate for modeling dust events on Owen Lake which are sometimes influenced by complex wind patterns, with plumes from the northern portion of the lakebed traveling in different directions than plumes in the southern portion.

The model domain shown in Figure C.6.1 includes a 34 km-by-48 km area centered on Owens Lake. The meteorological and computational grid will use a one-kilometer horizontal mesh size with ten vertical levels extending from the surface to four kilometers aloft. The extent of the model domain was selected to include the "data rich" Dust ID Program study area, terrain features that act to channel winds, and receptor areas of interest. This same model domain and mesh size were used in the simulations supporting the 2003 and 2008 Owens Valley  $PM_{10}$  State Implementation Plans.

### 6.2 Meteorological Data Set Construction

Three-dimensional wind fields for CALPUFF will be constructed from surface and upper air observations using the CALMET meteorological preprocessor program and the procedures employed in this protocol. CALMET combines surface observations, upper air observations, terrain elevations, and land use data into the format required by CALPUFF. Winds are adjusted objectively using combinations of both surface and upper air observations according to options specified by the user. In addition to specifying the three-dimensional wind field, CALMET also estimates the boundary layer parameters used to characterize diffusion and deposition by the CALPUFF dispersion model.

### 6.3 CALPUFF Options and Application

**Surface Observations.** The necessary surface meteorological data will come from the District's network of ten-meter towers shown in Figure C.1.1. The District may also install additional

stations to better characterize winds near suspect source areas not currently near an existing site. The District's historic meteorological database contains very few periods of missing data. Periods of missing data will be flagged and CALMET will construct the wind fields using the data from the remaining stations. In addition to the District's network, surface data from other field programs at Owens Lake will be used when available.

**Cloud Cover Data.** The current version of CALMET also requires cloud cover and ceiling height observations. Cloud cover is a variable used by CALMET to estimate the surface energy fluxes and, along with ceiling height, is used to calculate the Pasquill stability class. Hourly cloud cover and ceiling height observations are being collected from the surrounding surface airways observations at China Lake and Bishop Airport. During dust event conditions, the sensitivity of the CALPUFF modeling system to these variables is reduced, as the stability class becomes neutral under moderate to high winds. Algorithms within the modeling system that depend on the surface energy fluxes are dominated by the momentum flux and tend to be insensitive to cloud cover under high winds. For these reasons, the absence of local cloud cover and ceiling height measurements are not expected to significantly affect the results of the modeling study.

**Surface Characteristics and Terrain.** The CALPUFF modeling system requires land use and terrain data. These data are used by CALMET to adjust the wind field and affect the calculations performed by the CALPUFF dispersion model. CALPUFF considers spatial changes in land use, including the surface roughness, and the input data are specified on a horizontal grid. The terrain data influence the constructed wind fields and plume trajectories in regions of sparse observations. Land use and terrain data have been obtained from the U.S. Geological Survey (USGS) data sets on the Internet. The resolution of these land use and terrain data sets are 200 m and about 30 m, respectively. The District has prepared these data sets using the pre-processing software provided with the CALPUFF modeling system. The resulting grids have been plotted and checked against data from the District's GIS database where the modeling domain overlaps the District's data. The 1-km mesh size terrain used by CALMET and CALPUFF is shown in Figure C.6.1.

**Upper air data.** Upper air data will be collected from a number of different sources for construction of the wind fields and estimation of mixing heights with CALMET. Historically, both local and regional data were collected as follows:

- A 915 MHz Radar Wind Profiler and Radio Acoustic Sounding System (RASS) were used to collect upper level wind and temperature measurements. The Wind Profiler was initially located at Dirty Socks then moved to the Mill Site during the 4<sup>th</sup> quarter of 2001. The District discontinued measurements with the Wind Profiler on June 30, 2003. The Wind Profiler with RASS samples wind and temperature from 100 m, up to 5000 m with a vertical resolution as low as 60 m depending on the clutter environment, atmospheric scattering conditions, and pulse length. Experience at Owens Lake indicates wind data recovery is sometimes poor above 1000 m due to the dry environment and the RASS data are limited to the lower levels during windy conditions.
- Regional twice-daily upper air soundings from Desert Rock Airport (Mercury, Nevada) and China Lake Naval Air Station.



Figure C.6.1 - Model Domain, elevation contours and UTM coordinates for the Dust ID Model

During high wind events, observations from the Wind Profiler at both the Mill Site and Dirty Socks indicate very little wind speed or wind direction shear with height. Previous CALPUFF simulations suggest concentrations predicted at  $PM_{10}$  monitoring sites and at the regulatory shoreline are not usually influenced by upper level winds because the sources are ground based. The highest impacts occur close to the source areas, and there is very little wind shear during high winds.

Following removal of the Wind Profiler, soundings from China Lake and Desert Rock have been used to construct the data set. The China Lake and Desert Rock sounding will primarily be used for upper level temperature lapse rates. Winds aloft will be based on extrapolation of the surface wind measurements. The default algorithms employed by CALMET based on Similarity Theory often adjust the winds in the wrong direction and predict too much increase in wind speed with height even for very small surface roughness lengths. As an alternative, wind speeds aloft will be adjusted using the empirical results suggested by the previous Wind Profiler measurements. No wind direction turning with height will be assumed.

**CALMET options.** The options employed for the application of CALMET to construct the wind fields were provided in the "Modeling Protocol" (MFG, 2001). The majority of the selected model options are based on the defaults incorporated in the code by the model author. Notable model options include:

- Ten vertical levels varying geometrically from the surface to 4000 m. The geometric spacing provides better resolution near the surface and the upper limit is high enough to be above the boundary layer height.
- Vertical extrapolation of surface winds aloft using the results of the Wind Profiler studies.

Wind fields constructed with CALMET will be randomly checked by plotting the resultant fields and the surface observations on a base map. The CALDESK<sup>TM</sup> software package will also be used to view the CALMET wind fields.

The application of CALPUFF involves the selection of options controlling dispersion. Although the simulations are primarily driven by the meteorological data, emission fluxes, and source characterization, the dispersion options also affect predicted  $PM_{10}$  concentrations. The model options used in the past will continue to be considered for the Dust ID Program. These options include:

- Dispersion according to the conventional Pasquill-Gifford dispersion curves. Sensitivity tests were also performed by applying CALPUFF with dispersion routines based on Similarity Theory and estimated surface energy fluxes. These tests did not indicate improved performance over the Pasquill-Gifford based simulations.
- Near-field puffs modeled as Gaussian puffs, not elongated "slugs." CALPUFF contains a computation intensive "slug" algorithm for improved representation of plumes when wind directions vary rapidly in time. This option was tested, but did not significantly influence the CALPUFF predictions.

• Consideration of dry deposition and depletion of mass from the plume. The particle size data used will be based on measurements taken within dust plumes on Owens Lake as discussed below.

Dry deposition and subsequent depletion of mass from the dust plumes depend on the particle size distribution. Several field studies have collected particle size distributions within dust plumes at Owens Lake. Based on results from Niemeyer, *et al.* (1999), the CALPUFF simulations will assume a lognormal distribution with a geometric mean diameter of 3.5 µm and a geometric standard deviation of 2.2.

### 6.4 Background PM<sub>10</sub> Concentrations

The dispersion model simulations include only windblown emissions from the source areas with sand flux activity measurements. During high wind events, other local and regional sources of fugitive dust can contribute to the  $PM_{10}$  concentrations observed at the monitoring locations. In past analyses, a constant background concentration of  $20 \ \mu g/m^3$  was added to all predictions to account for background sources. The constant background was calculated from the average of the lowest observed  $PM_{10}$  concentrations for each dust event when 24-hour  $PM_{10}$  concentrations at any of the sites were above  $150 \ \mu g/m^3$ . To avoid including impacts from lakebed dust source areas in the background estimate, the procedures used a simple wind direction filter to exclude hours when the lakebed may have directly influenced observed  $PM_{10}$  concentrations. Such hours were removed and daily average background concentrations were recalculated based on the remaining data. Based on these analyses, a default background of  $20 \ \mu g/m^3$  will be added to the model prediction for each receptor location.

### 6.5 Area Source Characterization

CALPUFF simulations at Owens Lake are sensitive to source configuration. Emissions will be varied hourly according to the methods described in Section 6.6 and dust sources represented as rectangular area sources. CALPUFF contains an area source algorithm that provides numerically precise calculations within and near the area source location. The area source configuration used for the Dust ID model run for the period from July 2002 through June 2003 is shown in Figure C.6.2. The paired Sensit and CSC measurements were assumed to be representative of the horizontal sand flux for irregularly shaped source areas near the sand flux site. Field observers determined the size and shape of the source areas based on GPS mapping after the storms, observation maps made during the storms, and physical surface characteristics. All source areas were represented by sand flux measured at a single site that was applied to a series of 250 m x 250 m cells that were configured to conform to the general shape of the source area represented by the sand flux site.

The following general rules are used to characterize and map source areas on the lakebed:

• Actual source boundaries will be used when available to delineate emission sources in the simulations. Actual source boundaries will be determined using a weight-of-evidence approach considering visual observations, GPS mapping, and surface erosive characteristics. Erosive characteristics that might be considered when defining a source

boundary include properties of the soil, surface crusting, wetlands, and the proximity of the brine pool and existing DCMs.

- Source boundaries will also be defined based on the DCM locations. For example, sand flux measurements outside the DCM will be assumed to apply up to the boundary of the DCM. Sand flux measurements inside the DCM will be assumed to apply to the area inside the DCM.
- All source areas will be represented by a series of 250 m x 250 m cells that generally conform to the shape of the source area and share the same hourly sand flux rates as the sand flux site representing that source area. Cells small than 250 m x 250 m may be used near the shoreline to better represent source areas where predicted concentrations are expected to be particularly sensitive to the source area configuration. (Figure C.6.2)

### 6.6 Estimation of PM<sub>10</sub> Emissions

Hourly  $PM_{10}$  emissions for each source area will be estimated using Dust ID sand flux data and K-factors following the procedures described in Section 5. See also Attachment B of Board Order #160413-01 Sections A.2 and B.1 regarding the order of priority for using K-factors for modeling.

### 6.7 Simulation of Shoreline Concentrations

CALPUFF simulations will be used to assess whether lakebed source areas cause or contribute to an exceedance of the  $PM_{10}$  NAAQS in areas without  $PM_{10}$  monitoring sites. Predictions will be obtained using the receptor network that contains more than 1000 receptor locations placed at the regulatory shoreline (approximately at the 3600' elevation) of Owens Lake (see Figure C.6.3).



Area Source Configuration July 1, 2013 to February 28, 2014

Figure C.6.2. Area Source Configuration.





## Board Order 160413-01 Attachment D

## 2016 Procedure for Modifying Best Available Control Measures (BACM) for the Owens Valley Planning Area

The City of Los Angeles Department of Water and Power (City) may transition from one approved BACM to another provided that, with the exceptions addressed below, the performance standard of one or the other BACM is met at all times during the transition, and that the City makes a complete and technically well-supported written demonstration of that performance, with a built-in margin of safety, to the satisfaction of the APCO in advance of any actions by the City to transition. There are three circumstances under which temporary modifications may be allowed to the BACM identified in this SIP, if certain conditions are met. The circumstances are:

- 1. Adjustments to existing BACM. Research to demonstrate that sufficient PM<sub>10</sub> control efficiency during the dust season can be achieved and the NAAQS can be attained everywhere on or above the Regulatory Shoreline with a different performance standard for an existing BACM.
- 2. Research on new BACM
- 3. Transition from one BACM to another that requires a time period where neither BACM's performance standards can be met.

The City may make an application for any of these modifications in writing to the APCO. The complete application must include all necessary data and other technical information to support the application. Except for the specific limitations set forth below for BACM adjustments to Shallow Flooding, the APCO shall have full and sole discretion to accept, reject or condition the City's application for modifications to BACM on Owens Lake, to require additional technical information, and/or to independently monitor the results of the project, and shall provide her/his decision in writing. This same discretion shall apply to the APCO's consideration of each of the other applications that the City may make as further described below. The APCO will consider and respond to comments made by the City regarding any decision by the APCO to reject, condition or modify an application. Failure by the City to comply with any condition of the project approval may result in the APCO revoking the project approval and directing closure procedures be implemented for the project.

The flexible BACM description under the terms of the Order preclude the application of the U.S. Environmental Protection Agency's Natural Events Policy or Exceptional Events Rule for monitoring data used to make the determinations in this Attachment. All monitored  $PM_{10}$ 

concentrations that meet the EPA quality-assurance requirements contained in 40 CFR Part 58 and are measured at stations located at or no more than 3 kilometers above the Regulatory Shoreline (shoreline monitors) will be used in the analysis. The monitored values will be used as measured, and will not be adjusted for from-the-lake and non-lake wind directions. The modeling for the determinations will be performed in accordance with the 2016 Owens Lake Dust Source Identification Program Protocol (Board Order 160413-01, Attachment C).

### 1. ADJUSTMENTS TO EXISTING BACM

### A. BACM Adjustments to Shallow Flooding

- 1. The City shall have the option to conduct field testing to refine the wetness cover requirement to achieve 99 percent control efficiency in Shallow Flood areas (Shallow Flood Cover Test) within the boundaries of the 2016 Dust Control Areas identified in Paragraph 1 of Board Order 160413-01 (2016 TDCA).
  - A. The Shallow Flood Cover Test shall occur on one or more areas totaling not more than 1.5-square-miles, to be selected by the City and approved by the APCO, which approval shall not be unreasonably withheld, from within the 2016 TDCA areas requiring 99 percent control.
  - B. The Shallow Flood Cover Test design shall be prepared by the City and approved by the APCO, which approval shall not be unreasonably withheld, prior to implementation. Based on that design, the APCO will reasonably determine wetness cover requirements for the Shallow Flood Cover Test.
  - C. The City will be CEQA lead agency for the Shallow Flood Cover Test and shall secure all required responsible agency approvals, permits and leases.
- 2. If the APCO reasonably determines in writing that all required PM<sub>10</sub> Dust Control Measures in the 2016 TDCA have been operational for one continuous year (defined as 365 consecutive days) with no exceedance of the federal standard at monitors located at or above the Regulatory Shoreline caused solely by sources within the 2016 TDCA, the City shall be permitted to reduce the wetness cover by an average of 10 percent over those Shallow Flood areas requiring 99 percent control efficiency, excluding areas identified in Section A.2.C, below, provided that:
  - A. Application of the 10 percent reduction in wetness cover during the May 16 through June 30 Shallow Flood areal wetness cover reductions provided for in Paragraphs 9.B and 9.C of Board Order 160413-01 shall result in the lower of:
    - i The areal cover resulting from a 10 percent reduction; or
    - ii. The areal cover required in Paragraphs 9.B and 9.C of Board Order 160413-01.

- B. To implement the reductions set out in this Section, the City shall be required to first submit a written Wetness Cover Plan to the District for reducing the wetness cover on the eligible areas. The Wetness Cover Plan shall take into account:
  - i. The results of testing carried out pursuant to Section A.1, if conducted; and
  - ii. The results of fall and spring Shallow Flood wetness cover reduction operations carried out pursuant to Paragraphs 9.B and 9.C of Board Order 160413-01.
- C. If, in any year, the Wetness Cover Plan proposes reductions in wetness cover greater than 10 percent in any portion of the Shallow Flood areas covered by the Plan (consistent with the 10 percent limit on the overall average reduction), the City shall obtain the additional written approval of the APCO, which approval shall not be unreasonably withheld.
- D. In the event shoreline monitors show an exceedance of the federal standard, whether that exceedance is caused by sources within, outside, or both within and outside of the 2016 TDCA, no further reductions in wetness cover shall be permitted for any Shallow Flood area that has contributed to the exceedance, as determined by the methodology in the "2016 Owens Valley Planning Area Additional BACM Contingency Measures Determination Procedure " (BO #160413-01, Attachment B) and subject to the provisions of Section A.4, below.
- E. Except as provided in Section A.4, below, the City may continue to operate using reductions of wetness cover pursuant to a previously approved Wetness Cover Plan.
- 3. For each Dust Control Season (October 1 of each year through June 30 of the next year) that wetness cover reductions have taken place under the provisions of Section A.2, the City shall prepare and submit to the District a written report summarizing the results of the wetness cover reductions within 90 days after conclusion of the corresponding Dust Control Season. The report shall document the percentage of wetness cover for Shallow Flood areas and the effect(s) of wetness cover reductions on PM<sub>10</sub> concentrations at the 3,600-foot elevation Regulatory Shoreline.
- 4. Any areas for which wetness cover has been reduced pursuant to Section A.2 and that cause or contribute to an exceedance of the federal standard at the Regulatory Shoreline shall be remediated by the City under the Remedial Action Plan prepared pursuant to the requirements of Board Order 160413-01, Para. 8.I.
  - A. Subject to APCO written approval, which approval shall not be unreasonably withheld, the City may further reduce the wetness cover beyond that allowed in Section A.2 provided that:
    - i. The maximum 24-hour  $PM_{10}$  shoreline monitor values for at least 365 consecutive days of operation following initiation of the last approved Wetness Cover Plan does not exceed 130  $\mu$ g/m<sup>3</sup>; and

- ii. The City demonstrates to the reasonable satisfaction of the APCO that the modeled contributions from the lake bed for the same time period set forth in Section A.4.A.(i) plus the background of  $20 \,\mu g/m^3$  do not exceed  $120 \,\mu g/m^3$  at the Regulatory Shoreline.
- B. If the monitored values at the Regulatory Shoreline exceed  $130 \,\mu g/m^3$ , and it is determined that non-lake bed sources are contributing greater than  $20 \,\mu g/m^3$ , then the District will expeditiously seek to identify and require control of those non-lake bed sources so that the City may continue to implement efficient DCMs on the lake bed.
- C. If the City is entitled to further reduce wetness cover pursuant to this Section, the City shall prepare and submit an updated Wetness Cover Plan to the District to describe the wetness cover proposed for the subsequent, applicable Dust Control Season. The updated Wetness Cover Plan shall include:
  - i. A map that depicts the eligible Shallow Flood areas;
  - ii. The proposed amount of wetness cover for each eligible Shallow Flood area; and
  - iii. The method for determining effectiveness of the proposed wetness cover.
- D. The Wetness Cover Plan shall be subject to approval of the APCO, which approval shall not be unreasonably withheld.

### B. BACM Adjustment to Measures Other than Shallow Flooding within Existing Dust Control Areas

### Requirements to Begin the Process

At least once per year, the District's APCO will determine whether the Owens Lake bed will require BACM Contingency Measures in order to attain or maintain the federal 24-hour  $PM_{10}$  NAAQS. The APCO will use the procedure forth in Attachment B of Board Order 160413-01 to make the determination.

If the APCO determines that there were no monitored or modeled exceedances of the  $PM_{10}$  NAAQS as described above for the previous calendar year, each calendar year the APCO will do the following:

- 1) determine from the modeling if there are shoreline receptors where the model shows the combined predicted yearly maximum 24-hour contribution from all source areas on the lake bed contributing to those receptors plus background (24-hour average of  $20 \,\mu g/m^3$ ) is less than  $120 \,\mu g/m^3$ , and
- 2) determine if there were no concentrations greater than  $120 \,\mu g/m^3$  measured at any shoreline or near-shore monitoring site in the area of those receptors.

The APCO has full and sole discretion to make this determination.

### First Step on Test Areas

If there are receptors that meet the requirements described above, and provided that the City is in compliance with SIP control requirements on all areas of the lake bed, the APCO will inform the City that they may submit an application to reduce the level of control within a 1 to 2-squaremile test area of an existing Shallow Flooding Dust Control Measure (DCM) area or within a 160 to 320 acre test area of an existing Managed Vegetation DCM area that the modeling shows contributes to, and only to, the shoreline receptors described above where the yearly maximum

24-hour contribution from the lake bed plus background is less than  $120 \ \mu g/m^3$ . Application may be made for more than one area to be tested simultaneously provided the test areas do not impact any of the same modeled shoreline receptors or monitors (no overlapping impacts). The above limitations on test area size and location do not apply outside the boundaries of existing Dust Control Areas.

For the Managed Vegetation DCM, the cover may be reduced by no more than 5%, *e.g.*, 50% to 45% (one step). For other BACM or changes to compliance averaging areas (*e.g.*, one acre for Managed Vegetation), the APCO will determine the permitted test area size, averaging area, test location and step amount. An area with a non-zero contribution to a receptor will be considered

not to contribute to a receptor if the contribution from that area is less than 5  $\mu$ g/m<sup>3</sup> and the

yearly maximum 24-hour contribution from the lake bed plus background  $(20 \,\mu\text{g/m}^3)$  to that

receptor is less than 140  $\mu$ g/m<sup>3</sup>. (A "zero contribution" is defined by the accuracy of the

instruments used to collect the data, but in no case shall it be greater than 1  $\mu$ g/m<sup>3</sup>.) The City may also satisfy the requirements of a BACM test for Managed Vegetation with documentation of a site-specific BACM test, along with written justification for more general application of the results of this test.

The City's application to reduce the level of control over any area within the boundaries of existing Dust Control Areas must be accompanied by a modeling analysis that demonstrates that increasing  $PM_{10}$  emissions within the test area will not cause the predicted yearly maximum 24-hour concentrations along the shoreline to exceed 120 µg/m<sup>3</sup>, including background (20 µg/m<sup>3</sup>).

The application must also include, but is not limited to:

- 1) a project description,
- 2) site plan,
- 3) any necessary environmental documentation, responsible agency approvals, permits and leases,
- 4) a protocol to measure  $PM_{10}$  emissions and performance standards,
- 5) a time frame for project milestones and completion,
- 6) plans to control  $PM_{10}$  emissions if they exceed project limits,
- 7) project closure procedures if the project is discontinued,

- 8) soil texture information, soil chemistry, groundwater chemistry and applied water chemistry, and
- 9) a protocol to evaluate control effectiveness, estimate emissions and determine whether the results are transferable to other areas of the lake bed.

For BACM other than Shallow Flooding, the City will submit a relationship between control efficiency and performance standards based upon research results. The APCO has full and sole discretion to accept, reject, or modify that relationship. All modeling will be done according to the Dust ID Protocol in Attachment C.

Rectified aerial photography or satellite images of the area of adjusted BACM, or any other method approved by the APCO, will be used by the APCO to determine the performance standards for the adjusted BACM for this step and all subsequent steps.

All raw data must be shared with the APCO, and all data screening criteria must be approved (or disapproved) in writing by the APCO. The APCO may terminate the test at any time if modeling or monitoring show that modeled (including background of  $20 \,\mu\text{g/m}^3$ ) or monitored emissions

are increasing above trigger levels set by the APCO based upon a 140  $\mu$ g/m<sup>3</sup> modeled or monitored PM<sub>10</sub> concentration at the shoreline, or if the City is not following the APCO-approved protocol. The APCO has full and sole discretion to determine whether these conditions have been met.

The APCO has full and sole discretion to approve or reject the City's application or require conditions. The APCO will take action and notify the City in writing within 90 days of receipt of the written application. No changes may be made to BACM in advance of the APCO's approval. Any adjustments to BACM will be reported to CARB and the EPA by the APCO within 60 days of the APCO's approval.

### Subsequent Steps on Test Areas

The adjusted BACM shall be maintained by the City for one year. No other adjustments to BACM may be made during that year that impact any of the same set of model shoreline receptors. At the end of the year, the City may submit a new application to the APCO to reduce the level of control in the test area by another step provided:

- 1) the modeled yearly maximum 24-hour contribution at all of the shoreline receptors identified above from all lake bed sources including the test area, plus background ( $20 \mu g/m^3$ ), during the test period is less than  $120 \mu g/m^3$ , and
- 2) no concentrations greater than  $120 \,\mu g/m^3$  were measured at any shoreline monitor in the area of those receptors during the test period.

The new application must contain all the same elements as the original application, and all the data and modeling from the first step of the test.

The APCO has full and sole discretion to approve or reject the City's application, or to require conditions. Subsequent steps may be made in the same manner. The APCO will take action and notify the City in writing within 90 days of receipt of the written application.

### Requirement to Increase Controls on Test Areas

If, at the end of the year the predicted yearly maximum 24-hour contribution from all lake bed sources including the test area plus background  $(20 \ \mu g/m^3)$  exceeds 140  $\mu g/m^3$  at any of the shoreline receptors identified above, and/or concentrations greater than 140  $\mu g/m^3$  were measured at a shoreline monitor in the area of the identified receptors, then the City must increase the control efficiency on the test area to the last step that achieved concentrations below the 140  $\mu g/m^3$  threshold. For Managed Vegetation, this action must be taken within 12 months of the written determination by the APCO that the requirements for adjusting BACM were not met. For all other PM<sub>10</sub> control measures, this action must be taken within 60 days of the written determination by the APCO that the requirements for adjusting BACM were not met. The APCO has full and sole discretion to make that determination. The APCO will determine the time scale for compliance for other BACM as part of the approval of the application.

### SIP Revision for BACM for the Test Area

After three consecutive years of successful operation of the adjusted-BACM test area (modeled and monitored concentrations less than  $140 \,\mu g/m^3$  as described above), the City may apply to the District for a SIP Revision to redefine BACM for that test area on the Owens Lake bed provided:

- 1) the predicted yearly maximum 24-hour  $PM_{10}$  contribution for each year of the test from the test area plus background (20  $\mu$ g/m<sup>3</sup>) at all shoreline receptors is 140  $\mu$ g/m<sup>3</sup> or less, and
- 2) no  $PM_{10}$  concentrations greater than 140  $\mu$ g/m<sup>3</sup> were measured at any shoreline monitor during the three years of the test.

The APCO has full and sole discretion to determine whether these conditions have been met. After public notice and comment and a public hearing, the District Board has full and sole discretion to determine whether to adopt the SIP revision.

### Lake-Wide SIP Revision for BACM for a Soil Type

If, after three consecutive years of successful operation of the adjusted-BACM test area, the predicted yearly maximum 24-hour contribution from the test area and all source areas on the lake bed plus background  $(20 \ \mu g/m^3)$  at all shoreline receptors for all three years of the test is 140  $\mu g/m^3$  or less and no concentrations greater than 140  $\mu g/m^3$  were measured at any shoreline monitor during the three years of the test, the research conducted on these test areas can be used to determine the relationship between the PM<sub>10</sub> emissions, control efficiency and DCM performance standards. After the relationship has been identified, the City will use the research results in an updated modeling analysis that applies the test results to other areas on the lake bed with the same general soil type (sand-dominated, silt-dominated or clay-dominated) and under the same range of evaluated emissions or control efficiencies and performance standards as the test. The modeling will cover the entire test period, and will be done in accordance with the Dust ID Protocol. A DCM control map (map) will be prepared of lake bed control efficiencies (with

corresponding DCM performance standards) that would be required to achieve the  $PM_{10}$  NAAQS everywhere along the Regulatory Shoreline with that DCM in the same general soil type (sand-dominated, silt dominated or clay-dominated) as the test area and under the same range of control efficiencies, emissions, and performance standards evaluated in the test.

The City will then submit this draft map to the APCO for approval. The submittal must contain all the data from the test area and the modeling that produced the map. The APCO has full and sole discretion to approve, disapprove, or modify the draft map.

If the APCO approves the map, the City may apply to the District Board for a SIP Revision to redefine that BACM for that mapped area on the Owens Lake bed. After public notice and comment and a public hearing, the District Board has full and sole discretion to determine whether to adopt the SIP Revision. If a SIP Revision identifying a redefined BACM for Owens Lake is adopted by the District Board and approved by EPA, the redefined BACM may be implemented anywhere designated by the new DCM control map. If the City has implemented a different DCM in the mapped area, the requirements of the following section below titled

"Transitioning From One BACM to Another BACM" must also be met. If any modeled or monitored exceedance of the  $PM_{10}$  NAAQS results from these adjustments to BACM, the City shall implement the necessary actions and measures to restore the area to attainment with the NAAQS (BO 160413-01, para. 8.I.).

As many of the existing and potential dust control areas on the Owens Lake bed fall under the jurisdiction of the California State Lands Commission and other responsible agencies, the City must secure the appropriate approvals, leases and permits prior to implementing adjustments to existing BACM. However, nothing in this section is intended to give any responsible agency any authority beyond their authority under law.

### 2. RESEARCH ON POTENTIAL NEW BACM

The City may test new dust control measures at any time on areas of the lake bed that are emissive, except within the 2016 TDCA footprint where BACM must be implemented by December 31, 2017 or within any contingency measure areas where existing BACM has been implemented or is scheduled for implementation. If the City has tested a new control measure for three years in this manner, it may apply in writing to the APCO for a SIP Revision to designate the new dust control measure as BACM. The application must meet all USEPA requirements for

BACM designation and demonstrate to the APCO's satisfaction that the new control measure is sufficient to achieve the required  $PM_{10}$  emission reductions or control efficiency during the dust season and attain the NAAQS everywhere on the shoreline. The APCO has full and sole discretion to determine whether these conditions have been met.

The application shall include, but not be limited to:

- 1) a description of the new dust control measure
- 2) a description of the test site and the meteorological conditions under which it was tested

- 3) the measured  $PM_{10}$  emissions during the test
- 4) the test time frame
- 5) all raw data collected during the test
- 6) all data screening criteria and final data sets
- 7) data supporting the conclusion that the required control efficiency was achieved
- 8) a performance standard that the new dust control measure must meet in order to achieve the required emission reductions or control efficiency
- 9) an analysis of any environmental impacts of the dust control measure
- 10) the appropriate responsible agency approvals, permits and leases

The application must include modeling that demonstrates that the required  $PM_{10}$  emission reductions or control efficiency can be achieved during the dust season anywhere this control measure may be implemented on Owens Lake, and the NAAQS can be met at all times everywhere along the 3,600-foot elevation Regulatory Shoreline.

If the APCO determines that the application is complete and the above conditions have been met, the APCO shall have full discretion to select or approve a method of determining compliance of the proposed new BACM with its performance standard and include that method in the description of the proposed BACM for the SIP Revision. The District Governing Board has full and sole discretion to determine whether to adopt a SIP Revision for approval of any new BACM.

Upon adoption by the District Board, approval by CARB, and submission to USEPA of a SIP Revision that identifies a new BACM for Owens Lake, the City may implement only this one new control measure on one-half square mile of the next area to be identified as needing control as a BACM Contingency Measure until EPA approves this new measure as BACM. No other new control measures may be implemented on areas identified as needing control as a BACM Contingency Measure until EPA approves this new measure as BACM. The District Governing Board may limit the new BACM to specific circumstances, for example, distance of the new dust control measure from the shoreline or approval in a specific general soil type. Upon approval by USEPA, the new BACM may be implemented per the requirements described in the following section, "Transitioning From One BACM to Another BACM," or on any subsequent areas requiring control as a BACM Contingency Measure, subject to any limitation to specific circumstances.

As many of the existing and potential dust control areas on the Owens Lake bed fall under the jurisdiction of the California State Lands Commission and other responsible agencies, the City must secure the appropriate approvals, leases and permits prior to implementing any BACM test or new BACM. However, nothing in this section is intended to give any responsible agency any authority beyond their authority under law.

### 3. TRANSITIONING FROM ONE BACM TO ANOTHER BACM

If the City wishes to transition from one existing BACM to another existing BACM without meeting the performance standard of one or the other BACM at all times, it may submit an application to the APCO in writing for permission to do so. The APCO has full and sole

discretion to accept, reject or condition the City's application. The transition may be done on areas that in total comprise no more than three (3.0) square miles lake-wide for any BACM at one time. These transition areas shall be in addition to the Tillage with BACM Back-up areas

implemented by the City. The City shall not begin the transition in advance of the APCO's written approval.

The application shall include, but not be limited to:

- 1) a protocol that includes a project description
- 2) a site plan
- 3) a plan to measure  $PM_{10}$  emissions
- 4) a time frame for project milestones and completion
- 5) plans to control  $PM_{10}$  if emissions exceed any trigger value set by the APCO based upon a 140  $\mu$ g/m<sup>3</sup> modeled (including background of 20  $\mu$ g/m<sup>3</sup>) or monitored  $PM_{10}$  concentration at the shoreline
- 6) data supporting the assumption that the transition can be completed and the BACM performance standards can be achieved within three years of the start-up of construction
- 7) project closure procedures if the project is discontinued for any reason or if the PM<sub>10</sub> trigger value is exceeded
- 8) any necessary environmental documentation, responsible agency approvals, permits and leases
- 9) a dust control plan for the construction and transition period consistent with District Rule 401.A.

The protocol must include modeling in accordance with the Dust ID Protocol that predicts that the NAAQS will be met at all times everywhere on the shoreline during the transition period, and must include a method to monitor emissions continuously throughout the transition period. The transition must be complete, and the new BACM performance standard achieved, within three years of written notification from the City to the APCO that they are no longer maintaining the performance standard for the existing BACM, and are beginning the transition.

All raw data must be shared with the APCO, and all data screening criteria must be approved (or disapproved) in writing by the APCO. The APCO may terminate the transition at any time if modeling or monitoring show that emissions are increasing above any pre-set trigger level described in 5) above, or if the City is not following the APCO-approved protocol. The APCO has full and sole discretion to determine whether these conditions have been met.

During construction of the Transition Areas, the Transition Areas may not be compliant at all times with the BACM requirements set forth in Governing Board Order 080128-01. The City therefore shall take "Reasonable Precautions" to control particulate matter emissions to the extent practicable during construction of the Transition Areas as set forth in District Rule 401A (adopted 09/05/74; amended 12/04/06). The City will develop a Conceptual Dust Control Plan for the Transition Areas consistent with, and considered to be the Reasonable Precautions required by District Rule 401.A. – Fugitive Dust.

Upon completion of the design of the Transition Areas and prior to any construction or any time when dust control measures in Transition Areas may be modified in a manner that would cause the areas not to comply with BACM requirements, the City shall submit to the APCO for the APCO's approval a final Dust Control Plan. The APCO shall expeditiously review the City's plan and shall not unreasonably withhold his approval of such plan.

If the Transition Areas are not BACM compliant and if there is a monitored exceedance or if the Dust ID Protocol predicts an exceedance of the National Ambient Air Quality Standard for PM<sub>10</sub> caused solely by emissions from the Transition Areas (as determined by the Dust ID Protocol in Attachment C, the City shall immediately implement additional controls as provided in the approved Dust Control Plan to eliminate the exceedance. The APCO shall require additional

controls beyond those contained in the approved Dust Control Plan if the original plan's provisions are not sufficient to prevent exceedances of the air quality standards. If the City fully complies by immediately implementing the necessary controls, the District shall not take further enforcement action pursuant to the Health and Safety Code, a variance will not be required and the Respondent shall not be deemed in violation of this Order.

If the data show to the APCO's satisfaction that the transition has been accomplished while attaining the NAAQS everywhere at the shoreline, the City may submit an application to the APCO to allow another area to be transitioned. The APCO has full and sole discretion to accept, reject or condition the City's application. The same procedures outlined above will apply.

As many of the existing and potential dust control areas on the Owens Lake bed fall under the jurisdiction of the California State Lands Commission and other responsible agencies, the City must secure the appropriate approvals, leases and permits prior to BACM transitions. However, nothing in this section is intended to give any responsible agency any authority beyond their authority under law.



# Brine with BACM Backup (Brine BACM)

# Description of the use of Brine as a PM<sub>10</sub> Dust Control Measure on Owens Lake

Report By: Great Basin Unified Air Pollution Control District January 2016

(Blank Page)

## Brine with BACM Backup (Brine BACM)

# Description of the use of Brine as a PM<sub>10</sub> Dust Control Measure on Owens Lake



### Great Basin Unified Air Pollution Control District

### January 2016

### **Table of Contents**

|     |                                                           |                                            | Page |  |
|-----|-----------------------------------------------------------|--------------------------------------------|------|--|
| 1.0 | Overview of Brine BACM for PM <sub>10</sub> Dust Control1 |                                            |      |  |
| 2.0 | Brine Test Areas 4                                        |                                            |      |  |
| 3.0 | PM <sub>10</sub> Control Effectiveness                    |                                            |      |  |
| 4.0 | <b>0</b> Brine BACM Compliance Monitoring and Enforcement |                                            |      |  |
|     | 4.1                                                       | Qualifying Surfaces in Brine BACM          | 10   |  |
|     | 4.2                                                       | Exempted Portions of Brine BACM areas      | 12   |  |
| 5.0 | .0 Brine BACM Operation And Maintenance                   |                                            | 12   |  |
|     | 5.1                                                       | Maintenance Activities in Brine BACM Areas | 14   |  |
|     | 5.2                                                       | Re-Flooding of Brine BACM Areas            | 15   |  |
| 6.0 | Brine BACM Refinements 16                                 |                                            | 16   |  |
| 7.0 | Referen                                                   | ces                                        | 18   |  |

i

### LIST OF FIGURES

| Figure 1 | Map of Owens Lake dust controls and brine test areas                    | 3  |
|----------|-------------------------------------------------------------------------|----|
| Figure 2 | Open brine in T36-3 test area                                           | 5  |
| Figure 3 | Evaporite crust and polygonal structure in T8W                          | 6  |
| Figure 4 | Stable capillary brine salt crust in T36-3                              | 7  |
| Figure 5 | Stable capillary brine crust and evaporite salt deposit in T27 Addition | 8  |
| Figure 6 | Shallow Flooding control efficiency curve used for Brine BACM 1         | .1 |

### LIST OF ATTACHMENTS

| Attachment A | Monitoring and Enforcement Protocol for Brine with BACM Back-up |
|--------------|-----------------------------------------------------------------|
| Attachment B | Operations and Maintenance Protocol for Brine with BACM Back-up |

iii

### **Abbreviations and Acronyms**

| APCO<br>BACM     | Air Pollution Control Officer<br>Best Available Control Measure |
|------------------|-----------------------------------------------------------------|
| Brine BACM       | Brine with BACM Back-up                                         |
| cm               | centimeter                                                      |
| DCA              | Dust Control Area                                               |
| DCM              | Dust Control Measure                                            |
| DEM              | Digital Elevation Model                                         |
| District         | Great Basin Unified Air Pollution Control District              |
| DWMP             | Dynamic Water Management Plan                                   |
| IPET             | Induced Particulate Emission Test                               |
| LADWP            | Los Angeles Department of Water and Power                       |
| PM <sub>10</sub> | Particulate matter 10 micron or less in size                    |
| SIP              | State Implementation Plan                                       |
| TwB2             | Tillage with BACM Back-up                                       |

### **Terms and Definitions**

- Saturated Salt Solution: A solution is saturated if it won't dissolve any more of the salt at that particular temperature in the presence of crystals of the salt. The saturation point of a salt solution is dependent primarily on the composition of the dissolved salts and temperature. The saturation level of a sodium chloride solution is about 26-28% and changes only a small amount with temperature. The saturation levels of sodium carbonate, sodium bi-carbonate, and sodium sulfate solutions are highly variable with temperature.
- Evaporative Salt Deposit: A deposit of interlocking salt crystals formed by precipitation of salts from standing brine on top of the soil surface. This is different from the conventional "capillary salt crust" found on much of the Owens Lake bed.
- Capillary Salt Crust: A crust formed at the soil surface by upward capillary movement of saline water through the soil column and subsequent precipitation of salt minerals. The crust generally consists of a mix of salt minerals and soil particles.

### Brine with BACM Backup (Brine BACM)

# Description of the use of Brine as a PM<sub>10</sub> Dust Control Measure on Owens Lake



### **Great Basin Unified Air Pollution Control District**

### January 2016

### 1.0 Overview of Brine BACM for PM<sub>10</sub> Dust Control

The Owens Lake system is enriched with salts. The salts are present both in solution in water and in solid form in the soils and at the surface as salt crusts. Using those salts for dust control purposes has been proposed by multiple people and entities over the years as a way to utilize the local mineral resource and as a way to reduce overall fresh water consumption on the lakebed. Use of salts for dust control can be incorporated into an overall salt management plan for the dust controls on the lake bed. Proposals have ranged from two extremes which utilize "brine" either to directly wet the surface (i.e. a form of Shallow Flooding) to managing the chemistry by controlled precipitation of salt phases from a "brine" solution in order to create a non-emissive stable evaporative salt deposit (salt ponds/salt flats). The use of brine as a dust control measure, as described here, is based on observations and measurements from both test areas as well as naturally occurring areas on Owens Lake.

Mining of the mineral trona (a hydrated sodium carbonate-bicarbonate salt) has a long history on Owens Lake in order to produce soda ash. Mining operations first began in the late 1800's on the eastern shore of the lake in association with the narrow gauge Carson and Colorado railroad. As the lake receded following diversions of water from the Owens River and tributary streams, mining operations moved largely to the western side of the lake shore. Additionally, as the salt concentration of the lake water increased, mining methods switched from controlled precipitation of trona directly from lake water in evaporation panels to harvesting precipitated trona deposits on the lakebed. Currently, salt mining on Owens Lake is conducted by Rio Tinto Minerals with operations on the lakebed in the southern portion of the brine pond. The salt chemistry on Owens Lake is dominated by five main elements and/or compounds. The main cation, sodium (Na<sup>+1</sup>), is bonded with four different anions, carbonate ( $CO_3^{-2}$ ), bicarbonate ( $HCO_3^{-1}$ ), sulfate ( $SO_4^{-2}$ ) and chloride (Cl<sup>-1</sup>), to form a suite of different salt minerals many of which have molecules of water incorporated into their crystal structure. The sodium carbonate, bi-carbonate, and sulfate minerals are highly sensitive to temperature such that the order of crystallization during evaporation and the hydration state of the minerals changes seasonally. These dynamic mineral phase changes and crystallization sequence changes make development and maintenance of a long-term compositionally stable salt flat difficult for dust control.

In 2013, as part of a Settlement Agreement between the District and LADWP, the use of "brine" was approved as a BACM modification termed "Brine Shallow Flood" for use on Owens Lake (2013 SOA). However, no definition of Brine Shallow Flood was ever developed such that the requirements for Brine Shallow Flood were the same as for the original Shallow Flooding BACM (72 to 75% wetness cover for 99% dust control, depending on location). Although shallow flooding areas with brine reduces water use in a given area due to the low evaporation rate of brine as compared with fresher water, both the District and LADWP recognize that "brine" is capable of providing required dust control with reduced wetness cover levels combined with a precipitated evaporative deposit with little to no visible liquid, thereby reducing overall water use even further.

Six separate areas totaling 0.92 square miles have been tested collaboratively between the District and LADWP since 2012-2013 in an effort to learn more about the effectiveness and requirements for PM<sub>10</sub> dust control (Figure 1). Investigations of brine test areas show that effective dust control is provided by a combination of wetness cover and presence of thick stable salt crusts. Thus, the definition of "Brine BACM", presented here, is based on the presence of these stable surfaces.

Fundamentally, "Brine BACM", as described here, is a version of Shallow Flooding BACM except that the requirement for covering the surface with water to meet prescribed Shallow Flooding wetness cover is only needed when the surface condition of an area deteriorates such that it is in a potentially emissive state. Officially, the dust control measure described here is termed <u>Brine with BACM Back-up</u>, due to the provision for re-wetting areas per Shallow Flooding requirements, however, for ease of use, the synonymous term <u>Brine BACM</u> shall be used.

2





3

### 2.0 Brine Test Areas

All of the test areas are located on the inner or lower elevation portions of the dust control project near or adjacent to the brine pond (Figure 1). Prior to the start of testing, all of the areas were operated as Shallow Flooding BACM. In the Owens Lake dust control project, the salinity of the water in the Shallow Flooding areas generally increases through the system such that the areas at the lowest elevation or with the longest flow path have the highest salt content. All DCAs being tested as brine areas contained high salinity water and low habitat value for birds prior to the initiation of testing. As with other forms of water-efficient DCMs (e.g., gravel, tillage), brine areas have low habitat value.

The first brine test area began operation in 2012 in the northwestern portion of the T10-3 DCA. The condition of the T10-3 test area has been monitored through visual and surface observations and with sand flux monitoring instrumentation since 2012. During this period there have been no observed or monitored dust emissions or source area activity. The T10-3 brine test has been operated with little to no water inflow added (other than direct precipitation) into the DCA cell during its operation.

The surface of the T10-3 brine test area consists of a mix of brine, wet<sup>1</sup> and dry evaporite crust<sup>2</sup>, and wet and dry conventional salt crust (termed capillary crust). Additionally, within the T10-3 brine test area there are areas of preserved tillage ridges from temporary tillage conducted in 2009 during Phase 7 project construction. While the preserved tillage ridges provide some surface roughness, they are covered with a thick (10-15 cm) capillary salt crust such that the surface protection mechanism is considered to be from the thick crust development and not the surface roughness.

Based on the success of the T10-3 brine test, five additional test areas started operation in 2013. Monitoring of these areas shows that they have remained non-emissive since testing began. Photos of the three main stable surfaces present in the brine test areas are provided in Figures 2 through 5.

<sup>&</sup>lt;sup>1</sup> The term "wet" crust is used here instead of "saturated" to note that the surface meets the criteria for Shallow Flooding compliance. This is to distinguish between the dual meanings of the term indicating being hydrologically saturated as opposed to chemically saturated. Hypersaline brine and associated evaporite crusts on Owens Lake in many cases are both.

<sup>&</sup>lt;sup>2</sup> The term evaporite crust is used to describe a deposit of interlocking salt crystals formed by precipitation of salts from standing brine on top of the soil surface. This is different from formation of conventional salt crust on the lakebed surface formed by upward capillary movement of saline water through the soil and subsequent precipitation of salts.



Figure 2. Oblique air photo of T36-3 DCA test area. Open brine is visible as dark red to pink colored areas. White surface is an evaporite crust forming from precipitation of salts from the brine. Heaved pressure ridges in the evaporite crust are visible and divide the brine into a polygonal structure. The width across the dust control cell is approximately 100 meters.

5



Figure 3. Stable non-emissive evaporite crust formed in T8W DCA test area. Heaved pressure ridges in the evaporite crust create large-scale polygonal structure.



Figure 4. Photo of non-emissive capillary brine salt crust present in the western portion of the T36-3 test area. Crust is located on a slightly elevated portion of the area. The capillary brine crust is 15 to 20 centimeters thick in this area. Note the presence of a mix of open brine and evaporite crust in the upper left.

7



Figure 5. Photo of the T27-Addition test area with thick heaved capillary brine crust in the foreground transitioning to an evaporite salt deposit in the middle of the picture.

### 3.0 PM<sub>10</sub> Control Effectiveness for Brine BACM

Brine test areas have been very effective in controlling wind-blown dust and  $PM_{10}$  at Owens Lake with no observed or monitored dust emissions. The design of Brine BACM is modeled on these test areas as well as the approximately 25 square mile brine pond, situated in the lowest portion of the lake bed. The test areas and brine pond consist of a mixture of open brine, evaporite salt deposit and conventional capillary salt crust. The brine pond has been observed to be stable with respect to dust emissions and has not been identified as a source of  $PM_{10}$ exceedances within the Owens Valley Planning Area since monitoring and observations of dust sources began in the late 1980's. The conditions found in the brine pond have been successfully replicated in the test areas controlling  $PM_{10}$  emissions from those areas.

Visual observations and sand motion monitoring conducted on the brine test areas have shown no dust plumes originating from the test areas such that the control effectiveness for reduction in PM<sub>10</sub> is estimated to be at least 99 to 100% during the testing period. However, since testing of the brine areas has been conducted from 2012- 2015, during a multi-year drought, it is unknown if the brine areas would continue to be stable when subjected to typical winter storms and precipitation. This uncertainty is due to the dynamic nature of the salt minerals on Owens Lake which go through compositional phase changes when subjected to precipitation in the winter. Under the right conditions (typically following winter snow or rain events), the daily transitioning between the hydrated and dehydrated phases of the salt minerals can create an emissive salt powder on the surface. Some of the highest concentrations of PM<sub>10</sub> from the lake bed have been measured under these conditions.

Thus, Brine BACM is not designated as a standalone measure but has the requirement that should the surface conditions within an area deteriorate or the overall extent of the protective brine and salt crust cover decrease below prescribed levels; the area will either be re-wetted such that it meets Shallow Flooding BACM control requirements or will have maintenance activities performed to restore compliant surface coverage. Triggers for maintenance and reflooding activities are provided in Sections 5.1 and 5.2. In this manner, the control effectiveness will always be maintained at least at 99%.

### 4.0 Brine BACM Compliance Monitoring and Enforcement

The distribution of component stable surfaces in the areas controlled with Brine BACM can be determined by visual observation, aerial photography, satellite imagery or any other method approved by the APCO. The combined areal surface cover of qualifying component stable surfaces within a Brine BACM area must be at least the percentage required for fully compliant Shallow Flooding BACM. Currently, Shallow Flooding areas requiring 99% control efficiency

must have 72% to 75% wetness cover, depending on location. Similarly, Brine BACM areas requiring 99% control must have 72% to 75% total surface cover (depending on the original Shallow Flooding cover requirement) of a mix of stable qualifying surfaces. For areas requiring less than 99% control, the surface coverage of component surfaces shall be determined by the current Shallow Flooding control efficiency curve (Figure 6). Surface cover percentages required to achieve required control efficiencies may be modified based on approved results of Shallow Flooding curve refinement testing.

### 4.1 Qualifying Stable Surfaces in Brine BACM

Stable surfaces for Brine BACM shall be defined as consisting of standing water, evaporite salt deposit, and capillary brine salt crust with the following conditions:

- 1) Water: Standing water or hydrologically saturated surface as defined by Shallow Flooding BACM. Water may have any salinity.
- 2) Evaporite Salt Deposit: A crystalline deposit of salt minerals precipitated on the surface of the lake bed from evaporation of Owens Lake brine. The evaporite salt deposit does not include the development of salt crust by upward capillary movement of saline fluids through the soil column. The evaporite salt deposit must have an average thickness of 1.5 centimeters or greater and may be either wet or dry.
- 3) Capillary Brine Salt Crust: A crust enriched in salt minerals formed at the soil surface by upward capillary movement of water through the soil. The capillary brine crust typically consists of a mix of salt minerals and soil particles in various proportions. The capillary brine salt crust within a Brine BACM area must have an average thickness of 10 centimeters or greater and may be either wet or dry.

There is no salinity threshold requirement for water within a Brine BACM area since dust control is achieved by the wetness of the water and not the salt content. However, for long term maintenance of a Brine BACM area, use of hypersaline water or "Owens Lake brine" is recommended due to the extremely low evaporation rate and so it can be used to create stable evaporite salt deposits.



Figure 6. Shallow Flooding control efficiency curve used to determine the percentage of surface cover required for the three qualifying stable surfaces that are part of Brine BACM.
The required surface cover within each Brine BACM area can be achieved solely with water or solely with an evaporite salt deposit ( $\geq$ 1.5 cm thickness). Thus compliance can be determined based on the presence of these two surfaces by themselves. However, a capillary brine salt crust ( $\geq$  10 cm thickness) must be accompanied by either water and/or an evaporite salt deposit. The proportion of qualifying capillary brine crust within a Brine BACM area cannot exceed one-third of the required total compliant cover within a Brine BACM area.

Currently, the District will use publically available USGS Landsat satellite imagery and a process described by the District's remote sensing consultant, Desert Research Institute (DRI, 2014) for Shallow Flooding areas to assess the percent cover of Brine BACM areas by water, wet evaporite salt deposit, and wet capillary crust. The proportion of a Brine BACM area consisting of stable dry evaporite salt deposit or stable dry capillary brine crust will be determined using airborne photography or imagery and remote sensing techniques combined with field verification. The details for compliance monitoring of the Brine BACM areas to determine if they meet the required performance criteria are available in Section C of Attachment A to this report.

### 4.2 Exempted Portions of Brine BACM Areas

The following portions of the areas designated for control with Brine BACM are exempted from the stable surface requirements:

- 1. Raised berms, roadways and their shoulders necessary to access, operate, and maintain the control measure which are otherwise controlled and maintained to render them substantially non-emissive.
- 2. Raised pads containing vaults, pumping equipment or control equipment necessary for operation of existing infrastructure which are otherwise controlled and maintained to render them substantially non-emissive.

"Substantially non-emissive" shall be defined to mean that the surface is protected with gravel or durable pavement sufficient to meet the requirements of District Rules 400 and 401 (visible emissions and fugitive dust).

### 5.0 Brine BACM Operation and Maintenance

The protocol for operation and maintenance of Brine BACM areas is provided in Attachment B to this report. Brine BACM areas shall at all times during the dust season, consist of a mixture of water, evaporite salt deposit with a minimum average thickness of 1.5 centimeters, and capillary brine salt crust with a minimum average thickness of 10 centimeters such that the

total percent areal coverage meets that required for compliant Shallow Flooding BACM. There is no limit on the proportion surface cover of water or evaporite salt deposit within a Brine BACM area, however, the proportion of capillary brine salt crust shall not exceed more than one-third of the required total compliant surface cover of a Brine BACM area.

The dust season shall be defined as extending from October 16 to June 30 of the following year except as modified by the Dynamic Water Management Plan (GBUAPCD, 2016b). Brine BACM can be implemented for dust control on Owens Lake where Shallow Flooding infrastructure exists and Shallow Flooding can be implemented to ensure that Brine BACM areas do not cause or contribute to PM<sub>10</sub> standard exceedances.

Site operations are expected to be minimal since the component stable surfaces that contribute to the required aggregated surface coverage in Brine BACM areas generally change slowly. Each Brine BACM area shall be operated such that the total areal extent of the surface cover of the qualifying surfaces are maintained such that they meet or exceed those as defined by the Shallow Flooding control efficiency curve (or its approved refinement). The total combined mosaic of stable Brine BACM surfaces shall be substantially evenly distributed across the dust control area per the requirement of Shallow Flooding BACM.

The areas operated with Brine BACM will be monitored by the District to ensure that the stable surfaces within the Brine BACM areas meet the required cover requirement (Figure 6) and that they remain stable and non-emissive. Wetness cover monitoring of Brine BACM DCAs will be conducted regularly throughout the dust season as part of the routine Shallow Flooding compliance determinations. Evaluation of the stable evaporite salt deposit and capillary brine crust surfaces will be conducted primarily in the fall prior to the beginning of the October 16 dust season. Additional crust surface monitoring will be conducted, as needed, if conditions are observed to change within a Brine BACM area or within 30 days of ordered maintenance or reflooding activities. The technical method for conducting compliance monitoring for Brine BACM areas is provided in Section C of Attachment A.

Monitored areas that have deteriorated such that the three component qualifying stable surfaces no longer meet the aggregated required surface coverage and/or are determined to no longer provide the required PM<sub>10</sub> control will require either some type of maintenance action or addition of water to re-establish the performance criteria. The protocol for operation and maintenance of Brine BACM areas is provided as Attachment B to this report.

The District will use results from Induced Particulate Emission Test (IPET) testing, sand flux monitoring, field measurements of the thickness of evaporite and capillary crusts along with

13

surface integrity observations, aerial photography, video and remote sensing techniques to document the condition and potential emissivity of Brine BACM areas. Conditions including, but not limited to, presence of loose soils, powdery salt efflorescence, and erosion of heaved crust ridges will also be used to evaluate the integrity of Brine BACM areas. Since vehicle and foot access across the Brine BACM areas is expected to be difficult, and in some cases impossible, the evaluation for compliance with overall coverage requirements and emissivity will, in many cases, be conducted primarily through remote sensing, aerial photography and visual dust observations.

The conditions that trigger maintenance activities or addition of water (Re-Flooding) are discussed below. Note that the term re-flooding is used throughout the definition of Brine BACM since this measure is a variation of Shallow Flooding BACM. If re-flooding is performed with fresh or relatively low salinity water, although it will re-establish a fully compliant dust control area, it may actually be detrimental to the long term operation of the re-flooded area as Brine BACM since it may dissolve some of otherwise compliant evaporite salt deposit and capillary brine crusts. For long-term successful operation and maintenance of Brine BACM areas it is recommended that, if possible, the re-flooding be completed with "Owens Lake brine" or high salinity water.

#### 5.1 Maintenance Activities in Brine BACM Areas

Maintenance will be undertaken on a Brine BACM area that does not meet the required total aggregate cover of qualifying surfaces or the proportion of capillary brine crust exceeds the allowed one-third of the total required cover, provided the area has not been triggered for reflooding by conditions in Section 5.2 and Attachment A. If it is feasible, maintenance activities may be conducted only on portions of a Brine BACM area to re-establish the required surface cover.

Examples of maintenance activities that may be undertaken include, but are not limited, to the following.

- 1) Addition of water to increase the surface coverage within a Brine BACM area.
- 2) Spreading of existing water within a Brine BACM area to increase surface coverage.
- 3) Spreading of brine conveyed to the site from elsewhere.
- 4) Alteration of topography to facilitate items 1, 2, or 3, above.

The goal of maintenance activities is to re-establish the total combined cover of qualifying stable surfaces within a Brine BACM area. Should maintenance activities be needed, the LADWP shall submit a maintenance plan to the District within 14 calendar days of written notification by the APCO. The maintenance plan shall include a description of the activities planned and a schedule for their implementation. Upon approval by the APCO, the plan shall be implemented according to the approval schedule.

#### 5.2 Re-Flooding of Brine BACM Areas

Re-Flooding will be required when a Brine BACM area deteriorates such that it is determined to be potentially emissive. The monitoring and enforcement protocol for Brine BACM areas is provided in Attachment A to this docment.

Conditions that may trigger a re-flood order by the APCO are given below, but are not limited to:

- 1) Deterioration of an otherwise compliant evaporite salt deposit or capillary brine salt crust such that it is an emissive state. An emissive state will be determined by using the IPET method in the TwB2 monitoring and enforcement protocol (see Attachment C of the 2014 Stipulated Judgement (2014 SJ)).
- 2) Sand flux at a sand flux monitoring (SFM) site exceeds 5 grams/cm<sup>2</sup>/day. Sand flux will be measured following methods in the Dust ID protocol (GBUAPCD, 2016c).
- 3) Dust plume and surface integrity observations. Dust plume and surface integrity observations will be used in conjunction with sand flux monitoring and/or IPET testing to determine if an area is deteriorating and requires re-flooding. Dust plume observation methods shall follow those in the 2016 Dust ID protocol (GBUAPCD, 2016c).
- 4) Reduction in total surface cover of qualifying stable brine surfaces. A Brine BACM area shall require re-flooding if the total aggregated combined surface cover of the qualifying Brine BACM surfaces falls below 60% for areas requiring 99% control efficiency. Areas requiring less than 99% control efficiency will require re-flooding if the total aggregated cover of Brine BACM surfaces drops such that there is a 10% loss or more of control efficiency. The relationship between total surface cover and control efficiency shall be determined by the most current approved Shallow Flooding curve. In these cases of reduced surface coverage, there does not need to

be observed dust plumes, mitigation level action from IPET runs or active sand flux greater than 5 grams/cm<sup>2</sup>/day.

When a written re-flood order has been made by the APCO, then LADWP shall, within 37 calendar days of such order, re-flood a Brine BACM area so as to re-establish fully compliant Shallow Flooding in accordance with the most current Shallow Flooding BACM requirements. If physically feasible, re-flooding can be limited to portions of the Brine BACM areas that are determined by the APCO to require re-flooding and not the entire Brine BACM area. Such re-flooding orders are not appealable by the LADWP to the District Governing Board, Hearing Board, or any other agency.

#### 6.0 Brine BACM Refinements

Research has shown that all of the brine test areas have provided 99-100%  $PM_{10}$  control effectiveness during their operation as brine areas. However, none of the test areas were allowed to "fail" by having their surfaces deteriorate such that they became emissive. Thus it is possible that the areal coverage requirement of component stable surfaces within Brine BACM areas is conservative and that the same level of  $PM_{10}$  control can be achieved with less overall surface coverage. Additionally, the minimum thickness requirements for the evaporite deposit and capillary crusts may be greater than what is needed to achieve the level of dust control required on Owens Lake. The surface cover requirements and crust thickness were set at levels supported by investigation of test areas and naturally stable areas on the lake bed and where the District is confident that the required level of  $PM_{10}$  control will be achieved.

The total cover of qualified Brine BACM surfaces required in Brine BACM areas is tied to the Shallow Flooding BACM wetness cover curve. Should there be refinements to the Shallow Flooding wetness cover curve, such refinements shall apply to the cover requirements for Brine BACM areas.

The APCO acknowledges that IPET, sand flux and crust thickness action thresholds may be conservative for Brine BACM areas. The warning and mitigation trigger values may be adjusted by the APCO for Brine BACM areas based on additional data collected from operating Brine BACM areas. LADWP and the District will meet annually to discuss the results of the monitoring and testing and consider adjustments to the triggers. The APCO reserves the right to adjust the above Brine BACM performance criteria based on supporting data and after consultation with LADWP.

The 2016 SIP contains provision to "fine-tune" the requirements for Brine BACM including: (1) the amount of areal coverage needed of the three stable component brine surfaces to achieve the required PM<sub>10</sub> control efficiency, and 2) the thickness thresholds of the stable crusted surfaces, respectively. The detailed procedure for the Brine BACM refinements is provided in GBUAPCD, 2016a.

17

#### 7.0 References

The references listed here include those cited in Attachments A and B to this document.

- 2013 SOA. 2013 Stipulated Order for Abatement. Board Order 130916-01 Order of the Governing Board Of The Great Basin Unified Air Pollution Control District Amending the 2008 Owens Valley Pm10 Planning Area Demonstration of Attainment State Implementation Plan To Incorporate Revisions To The Date Required For The Implementation Of Best Available Control Measures For The "Phase 7a" Dust Control Areas, Modifying Certain Best Available Control Measure Descriptions And Modifying Provisions For Pm10 Control In The Keeler Dunes. September 16, 2013.
- 2014 SJ. Stipulated Judgement for Respondent and Defendant Great Basin Unified Air Pollution Control District. Superior Court of the State of California, County of Sacramento. December 19, 2014.
- DRI 2014. McGwire, K., 2014. Field-Based Calculation of the Shortwave Infrared Teeter Point for Shallow Flooding Analysis Using Landsat 8 Operational Land Imager. Report prepared for Great Basin Unified Air Pollution Control District by Ken McGwire, Associate Research Professor at the Desert Research Institute, Reno, Nevada. October 13, 2014.
- DRI, 2015. The 2015 Geocorrection Gold Standard Image for Owens Lake. Report prepared for Great Basin Unified Air Pollution Control District by Ken McGwire, Associate Research Professor at the Desert Research Institute, Reno, Nevada. February 19, 2015.
- GBUAPCD, 2016a. 2016 Procedure for Modifying Best Available Control Measures (BACM) for the Owens Valley Planning Area. Attachment D of 2016 SIP. Great Basin Unified Air Pollution Control District. 2016.
- GBUAPCD, 2016b. 2016 Owens Lake Dynamic Water Management Plan. Great Basin Unified Air Pollution Control District. Attachment F of 2016 SIP. Great Basin Unified Air Pollution Control District. January 2016.
- GBUAPCD 2016c. 2016 Owens Lake Dust Source Identification Program Protocol. Attachment C of 2016 SIP. Great Basin Unified Air Pollution Control District. 2016.
- HydroBio, 2005. Shallow Flood Detection by Remote Sensing. Report prepared for Great Basin Unified Air Pollution Control District by HydroBio INC., May 2005.

18

# Attachment A

Monitoring and Enforcement Protocol for Owens Lake Brine with BACM Backup (Brine BACM) (Blank Page)

# Attachment A

# Monitoring and Enforcement Protocol for Owens Lake Brine with BACM Backup (Brine BACM)

January 2016

### 1.0 Objective

The Great Basin Unified Air Pollution Control District (District) intends to use this protocol as a basis for monitoring and enforcing the Owens Lake PM<sub>10</sub> control method known as Brine with Best Available Control Measure (BACM) Back-up (Brine BACM). The District intends to use the methods set forth in this protocol as a basis for determining if Brine BACM areas on the Owens Lake bed need maintenance and/or re-flooding in order to maintain or reestablish control efficiency for compliance with the National Ambient Air Quality Standard for particulate matter less than or equal to 10 microns (PM<sub>10</sub>). The District requires the Los Angeles Department of Water and Power (LADWP) to at all times maintain all Brine BACM areas in compliance with all conditions and procedures contained in this document such that Brine BACM areas provide the percent PM<sub>10</sub> reduction levels required on Owens Lake.

If a written re-flood order is issued by the APCO, then the LADWP shall within 37 calendar days of such order, re-flood a Brine BACM area so as to re-establish fully compliant Shallow Flooding in accordance with the most current Shallow Flooding BACM requirements. If a written order for maintenance activities is issued by the APCO, then the LADWP shall within 14 calendar days submit a maintenance plan to the District for approval by the APCO. Upon approval, the plan shall be implemented according to the approved schedule. If physically feasible, re-flooding or maintenance activities can be limited to portions of the Brine BACM areas that are determined by the APCO to require re-flooding or maintenance and not the entire Brine BACM area. Re-flooding or maintenance activity orders are not appealable by the LADWP to the District Governing Board, Hearing Board, or any other agency.

### A. Introduction

1. Brine BACM is a District-approved variation of the approved Shallow Flood BACM that covers emissive Owens Lake bed surfaces to prevent air emissions with a mix of three stable brine surfaces. The three qualifying component surface classes allowed within Brine BACM areas that contribute to the overall required coverage, as defined by the Shallow Flooding wetness cover curve (Figure A1), include:

a) <u>Water</u>: Standing water or hydrologically saturated surface as defined by Shallow Flooding BACM. Water may have any salinity.

Attachment A, Monitoring and Enforcement Protocol for Brine BACM

page 3



Figure A1. Shallow Flooding control efficiency wetness cover curve used to determine the percentage of surface cover required for the three qualifying stable surfaces that are part of Brine BACM.

Attachment A, Monitoring and Enforcement Protocol for Brine BACM

- b) <u>Stable Evaporite Deposit</u>: Crystalline deposit of evaporite minerals formed from precipitation of salts of the surface of the lake bed from Owens Lake brine.
   Evaporite deposit must have a thickness of 1.5 centimeters or more to be included in this class.
- c) <u>Stable Capillary Brine Salt Crust</u>: Crust formed at the surface of the lake bed by capillary wicking of salts through the soil to the surface. Capillary brine crust must have a thickness of 10 centimeters or more to be included in this class.

2. The required surface cover within each Brine BACM area can be achieved solely with water or solely with an evaporite salt deposit ( $\geq$ 1.5 cm thickness). Thus compliance can be determined based on the presence of these two surfaces by themselves. However, a capillary brine crust must be accompanied by either water and/or an evaporite crust. The proportion of capillary brine crust within a Brine BACM area cannot exceed one-third of the required total compliant cover within a Brine BACM area.

3. Each Brine BACM area shall be operated such that the total areal extent of the surface cover of the qualifying surfaces are maintained such that they meet or exceed those as defined by the Shallow Flooding control efficiency curve (or its approved refinement) (Figure A1). The total combined mosaic of stable Brine BACM surfaces shall be substantially evenly distributed across the dust control area.

4. Brine BACM can be used by LADWP throughout the Owens Lake bed where backup Shallow Flood BACM infrastructure exists and can be implemented, as set forth in this protocol, to ensure that Brine BACM areas do not cause or contribute to exceedances of the NAAQS for PM<sub>10</sub>.

5. The boundaries for each Brine BACM area will be pre-defined by LADWP prior to implementation. Each Brine BACM area will be monitored separately to determine compliance with required surface cover conditions, as specified in Sections B and C, below.

6. LADWP is required to re-flood Brine BACM areas, as set forth herein, upon a written order issued by the District's Air Pollution Control Officer (APCO). LADWP may not appeal an APCO order to re-flood a Brine BACM area to the District Governing or Hearing Boards or any other agency.

7. Within 37 calendar days of a written order by the APCO that all or part of a Brine BACM area must be re-flooded, LADWP shall re-flood so as to re-establish compliant Shallow Flooding

BACM in that area in accordance with the Shallow Flooding BACM requirements contained in the latest Owens Valley Planning Area State Implementation Plan (SIP). If feasible, re-flooding can be limited to portions of Brine BACM areas that are determined by the APCO to require reflooding and not to the entire Brine BACM area as defined by LADWP.

8. Failure to comply with the Shallow Flooding BACM requirements in any area within 37 days of the APCO's written order to re-flood may result in notices of violation from the APCO for each day of non-compliance.

9. If re-flooding is performed with fresh or relatively low salinity water, although it will reestablish a fully compliant dust control area, it may be detrimental to the long term operation of the re-flooded area as Brine BACM since it may dissolve some of otherwise compliant evaporite and capillary crusts. For long-term successful operation and maintenance of Brine BACM areas it is recommended that, if possible, the re-flooding be completed with "Owens Lake brine" or high salinity water.

10. LADWP shall operate the Brine BACM areas to ensure that the surfaces remain in a nonemissive condition and meet the cover and thickness requirements in order that the areas maintain the control efficiency required for Owens Lake BACM. Implementation and maintenance efforts shall follow the provisions of the Brine BACM Operations and Maintenance Protocol (see Attachment B to this document).

11. The goal of maintenance activities is to re-establish the total combined cover of qualifying stable surfaces within a Brine BACM area. Should maintenance activities be ordered by the APCO, the LADWP shall submit a maintenance plan to the APCO within 14 calendar days of written notification by the APCO. The maintenance plan shall be include a description of the activities planned and a schedule for their implementation. Upon approval by the APCO, the plan shall be implemented according to the approval schedule. Failure to execute maintenance procedures and reestablish a compliant Brine BACM or surface within specified time limits may result in notices of violation and/or re-flood orders from the APCO. LADWP may not appeal an APCO order for maintenance of a Brine BACM area to the District Governing or Hearing Boards or any other agency.

12. After the ordered re-flooding or maintenance activities have been performed, compliance monitoring as set forth in Sections B and C will be conducted within 30 calendar days.

Attachment A, Monitoring and Enforcement Protocol for Brine BACM

#### B. Brine BACM Monitoring

The District will monitor the Brine BACM areas, as set forth below, to ensure Brine BACM areas provide the percent emission reduction as required on the Owens Lake bed. The District will use Induced Particulate Emission Testing (IPET), sand flux monitoring, dust plume visual observations, field observations, as well as photography, video or other remote sensing techniques to document the condition and potential emissivity of Brine BACM areas.

- 1. Induced Particulate Emission Test (IPET)
  - a) The District will utilize the Induced Particulate Erosion Test (IPET) method developed for monitoring of TwB2 to determine if Brine BACM area surfaces are starting to become emissive and to advise LADWP with erosion potential alerts.
  - b) IPET testing will follow procedures provided in Attachment C of the 2014 Stipulated Judgement (2014 SJ).
  - c) The District will give LADWP field operations staff at least 24 hour notice of the time and place for IPET runs in order to allow LADWP staff an opportunity to observe those tests. LADWP staff does not need to be present for IPET testing to be used to call erosion alerts.
  - d) Three erosion alert levels are set using the IPET method: 1) an <u>early warning</u> of possible surface stability deterioration, 2) a <u>warning</u> level to alert LADWP of a potential breakdown of the surface stability and to advise voluntary maintenance efforts, and 3) a <u>mitigation</u> action level to require re-flooding of all or part of a Brine BACM Area. The IPET method will be used to determine erosion alert levels as follows:
    - Level 1 An erosion <u>early warning</u> is indicated when any visible dust is observed to be emitted from a surface or particles are dislodged when the RCWInD is flown at a height below one half of H<sub>t</sub>. Voluntary mitigation may be appropriate to prevent further surface degradation.
    - ii. Level 2 An erosion <u>warning</u> is indicated when any visible dust is observed to be emitted from a surface when the RCWInD is flown at a height below H<sub>t</sub> and above one half of H<sub>t</sub>. Voluntary mitigation is advised to prevent further surface degradation.

 iii. Level 3 – <u>Mitigation</u> action is required if visible dust is observed to be emitted from a surface when the RCWInD is flown at a height of H<sub>t</sub> or higher. If ordered by the APCO, LADWP must re-flood all or part of a Brine BACM area that triggers a Level 3 alert.

The APCO acknowledges that warning and mitigation triggers may be conservative for Brine BACM areas covered with durable brine crusts and/or located away from the regulatory shoreline. The warning and mitigation trigger values may be adjusted on a case-by-case basis by the APCO for each Brine BACM area based on further research on the emissivity of brine crusts and/or its distance from the regulatory shoreline. After one year of experience with Brine BACM and the IPET test, LADWP and the District will meet to discuss the results of the testing and consider adjustments to the triggers.

- e) The APCO reserves the right to adjust the IPET criteria based on supporting data and after consultation with LADWP.
- 2. Sand Flux Monitoring
  - a) Each Brine BACM area will be instrumented by the District with at least one sand flux monitoring (SFM) site. Each SFM site will pair CSCs with Sensits, radio equipment and dataloggers programmed to record 5-minute sand motion data. All Sensit data will be reported daily to the District office. Sand motion data from the CSCs and Sensits will be processed to calculate the sand flux history of a site per the protocol set forth in the 2016 Dust ID Protocol (GBUAPCD, 2016c).
  - b) SFM sites will primarily be located in portions of Brine BACM areas covered with a capillary crust.
  - c) The APCO may issue a partial or full Brine BACM area re-flood order if sand flux exceeds 5.0 g/cm<sup>2</sup>/day at any SFM site within a Brine BACM Area.
  - d) The APCO reserves the right to adjust the above criteria based on supporting data and after consultation with LADWP.
- 3. Dust Plume Observation
  - a) The District will monitor the dust plume activity from the Brine BACM areas following the 2016 Dust ID protocol (GBUAPCD, 2016c).

- b) Dust observations may be completed using human observers located either off the lake bed at one of the vantage points in the surrounding mountains or on the lakebed close to the Brine BACM areas.
- c) Dust activity may also be completed remotely using video or photos collected as part of the District's Dust Camera network. Such video or photos may be analyzed using the District's Terrestrial Imaging Georeferencing (TIG) methodology.
- d) Dust plume observations may be used in conjunction with the above described sand flux and IPET tests as a basis for an APCO re-flood order.
- 4. Surface Integrity Observations
  - a) The District will regularly monitor the conditions of the Brine BACM surfaces to verify that they meet the performance criteria for each surface class. Vehicle and foot access to much of the Brine BACM areas is expected to be difficult to impossible such that most of the field monitoring is expected to be concentrated to the edges of Brine BACM areas. The conditions of surfaces in portions of Brine BACM areas that are not accessible will be evaluated through aerial photography and/or imagery.
  - b) The average crust thickness and surface condition of accessible surfaces will be measured for evaporite salt deposit crusts and capillary brine salt crusts.
  - c) Surface condition observations will be conducted to determine if the surface has deteriorated and if it is potentially emissive. Observations will include classification of the surface based on the presence/absence of loose soil or salt deposits, erosion, and surface hardness.
  - d) The APCO may issue a partial or full order for re-flooding if the surface observations in conjunction with IPET and sand flux tests indicate that the evaporite or capillary brine crust surfaces in a Brine BACM area is determined to be emissive.
  - e) The APCO may issue a partial or full order for maintenance activities if the evaporite or capillary crust surfaces do not meet the required average thickness performance criteria but has not yet been observed to be emissive based on

surface observations in conjunction with IPET and sand flux testing.

- f) The APCO reserves the right to adjust the above criteria based on supporting data and after consultation with LADWP.
- 5. Air Photography and Remote Sensing
  - a) The District will regularly monitor the conditions of the Brine BACM areas using aerial photography and remote sensing techniques to verify that they meet the required surface coverage performance criteria.
  - b) The percentage of a Brine BACM covered with water, wet evaporite deposit and wet capillary brine salt crust will be determined using Landsat imagery following the established methodology as described in DRI (2014) or any other method approved by the APCO in consultation with LADWP.
  - c) The areal extent of the lake bed surface covered with stable evaporite deposit and stable capillary crust will be determined using the methodology as described here in Section C (*Technical Method for Monitoring Brine BACM Compliance*) or any other method approved by the APCO in consultation with the LADWP.
  - d) The APCO may issue an order for re-flooding for a whole Brine BACM area, or for any portion of a Brine BACM area, if the total aggregated combined surface cover of qualifying Brine BACM surfaces (as defined in Section A.1.) in a Brine BACM area falls below 60% for areas requiring 99% control efficiency. The surface cover requirement within a Brine BACM area shall be determined by the Shallow Flooding wetness cover-control efficiency curve (Figure A1).
  - e) The APCO may issue an order for re-flooding for a whole Brine BACM area, or for any portion of a Brine BACM area, for areas requiring less than 99% control efficiency if the total aggregated cover of Brine BACM qualified surfaces drops such that there is a 10% loss or more of control efficiency. The surface cover requirement within a Brine BACM area shall be determined by the Shallow Flooding wetness cover-control efficiency curve (Figure A1).
  - f) The APCO may issue an order for maintenance activities for a whole Brine BACM area, or any portion of a Brine BACM area, if the proportion of capillary brine crust exceeds the allowed one-third of the total required aggregated

cover of qualifying surfaces provided has not been ordered for re-flooding by conditions in Sections B.1.d.iii. (IPET), B.2.c. (sand flux), B.4.e. (crust thickness) or B.5.d. and B.5.e. (less than required surface cover). The surface cover requirement within a Brine BACM area shall be determined by the Shallow Flooding wetness cover-control efficiency curve (Figure A1).

- g) The APCO may issue an order for maintenance activities in a Brine BACM area that does not meet the aggregate cover of qualifying surface, provided the area has not been ordered for re-flooding by conditions in Sections B.1.d.iii. (IPET), B.2.c (sand flux), B.4.e. (crust thickness) or B.5.d and B.5.e. (less than required surface cover). The surface cover requirement within a Brine BACM area shall be determined by the Shallow Flooding wetness cover-control efficiency curve (Figure A1).
- h) The APCO reserves the right to adjust the above criteria based on supporting data and after consultation with LADWP.

### C. Technical Method for Monitoring Brine BACM Compliance

Brine BACM control areas will be monitored using a combination of photo-interpreted maps of surface types and the recurring shallow flood mapping method that was originally documented in HydroBio (2005) and most recently updated in DRI (2014). The mapping of surface types will distinguish protective evaporite salt deposit and capillary brine salt crusts that meet the Brine BACM performance criteria from non-compliant surfaces. The union of protective crust surfaces and those areas that meet the shallow flood wetness criteria on a given date will be used to measure the areal extent of qualifying Brine BACM surfaces within each Brine BACM control area. Mapping of the surface types within each Brine BACM control area will be conducted annually prior to, or at the beginning of, the dust season. Additionally, as needed during the dust season, surface mapping will also be re-evaluated within 30 days of any ordered maintenance and/or re-flooding activities.

The use of visually interpreted maps of surface types assumes that:

 the processes that create protective evaporite and capillary crusts operate in a relatively uniform manner over regions that have a similar geomorphic position and histories of brine exposure and disturbance, thereby creating a patchwork that can be effectively mapped, and • crust surfaces that meet the required Brine BACM performance criteria when dry will maintain their integrity after a wetting/drying cycle.

### Image Characteristics

Surface types may be mapped using a range of imaging platforms, including satellites, aircraft, or unmanned aerial vehicles (UAVs). Regardless of the collection platform, the imagery should be analyzed as a natural color composite of red, green, and blue wavelengths. The multispectral imagery must have a spatial resolution of 2 meters or finer. If satellite imagery is being used and a higher resolution panchromatic band is available, then pan sharpening should be applied. If imagery is collected from aircraft or UAV platforms, efforts should be made to avoid brightness variations that are not related to inherent surface conditions which may hamper visual analysis. For example,

- flights should be performed at times of day with high sun angles, preferably near noon,
- individual brine BACM control areas should be completely imaged in less than 30 minutes to minimize changes in illumination,
- flight lines should overlap to avoid gaps and to allow cropping of image edges where illumination artifacts are strongest, and
- the use of fewer flight lines at a coarser spatial resolution will be easier to interpret than a composite of unnecessarily high resolution images that have many brightness discrepancies and geometric misregistrations from one image to the next.

Annual image acquisitions should be performed in the fall during a time when water levels are at their lowest (typically September – early October). Surface moisture conditions should reflect the norm for that time of year, so imagery should not be collected immediately following precipitation events.

#### **Geocorrection**

Satellite imagery should be geo-corrected to the current Geocorrection Gold Standard Image (DRI, 2015). A minimum of twenty ground control points should be distributed in and around the various brine control areas. A first or second order polynomial should be used to register the new satellite data to within 5 meters RMSE of the Geocorrection Gold Standard. Imagery from aircraft or UAV may be geocorrected using onboard GPS and IMU data, or by photogrammetric methods, provided that it meets the 5 m RMSE criteria. The imagery should be resampled at its original spatial resolution using cubic convolution.

### Mapping Soil Surface Types

Mapping will be completed in two steps. The first step is to complete an initial set of maps through visual interpretation of the imagery. The second step is to field check the initial set of maps in the field and make adjustments to the mapped units as needed based on the field verification. A final set of maps will be completed following field verification that will be used to determine if a Brine BACM control area meets the performance requirements.

Initial mapping will be performed using visual interpretation, so there is no specific need to correct satellite brightness values to surface reflectance. Different brine control areas have different characteristics, so a range of contrast enhancements should be tested to maximize overall image contrast within each control area. Enhancements might include a linear stretch with 2% clipping of high and low extremes, histogram equalization, or a Gaussian stretch using 1 to 2 standard deviations. The statistics for calculating these contrast enhancements should be generated from the control area and its immediate surroundings. If the area surrounding the control area is generally brighter or darker than the control area itself, the analyst might set a higher clipping percentage on the overrepresented extreme for a linear stretch.

Judgement is required to distinguish what types of visual variation within a control area are significant enough to be mapped. One important criterion is the minimum mapping unit (MMU) which sets the required spatial extent that a feature should have in order to be mapped. For judging compliance of Brine BACM areas, the map of surface types will be intersected with a shallow flood map from Landsat that has a spatial resolution of 30 meters. The MMU will be half the Landsat resolution: 15 meters. Before delineating polygons of apparently different surface types, the analyst should use an interactive measurement tool to test the size of a number of smaller features within the control area in order to train their perception for the level of generalization of the 15 meter MMU. If the scale of the image on a computer display changes during the mapping effort, the analyst should retrain their perception of distances with the measurement tool. The analyst should expect that there will be unavoidable inclusions within some polygons and that boundaries should be smoothed to capture trends rather than every jagged edge. If there are distinct transition zones between two large polygons of different surface types and that transition zone is generally narrower than the MMU, the transition should not be explicitly mapped. Instead, the line dividing the two larger surface types should run down the middle of the transition zone.

The analyst should take time to assess the visually different subregions within each control area before delineating polygons for different surface types. A consistent strategy will be enforced by first generating a legend of general surface types that will be mapped based on a

relatively common range of surface brightness and texture, geomorphic characteristics, and disturbance history (e.g. "tilled with dark ridges and troughs", "tilled with bright ridges and light to bright troughs", "uniform medium tone with fine texture along western boundary"). Surface types composed of discrete patches that do not exceed the MMU should not be included in the legend. The analyst can use field experience to assess what changes in image tone and texture are associated primarily with variations in moisture content rather than protective attributes (e.g. moist versus dry evaporite crust greater than 1.5 cm). Patches of a given surface type should not be subdivided based on moisture content alone, since that distinction will be handled by the Landsat-based shallow flood map. Further subdivisions of polygons within the visually interpreted map may be made based on knowledge of relevant heterogeneity within the control area.

Initial maps of the surface types will be used for field checking the identified polygons within each Brine BACM control area. The initial maps should include the legend for that control area, show the mapped polygon boundaries on a backdrop of the imagery that was used to make them, and each polygon should be labeled with its class from the legend. The map legend also should include a circle or square indicating the size of the MMU.

### **Field Verification and Modifications**

Field personnel will be provided a GPS device that provides better than 2.5 meter X/Y accuracy and maps of the visually interpreted polygons in a format similar to that described above. The field crew will perform a reconnaissance of each mapped polygon to determine whether the image-defined boundaries correspond to a relatively uniform surface cover type. The goal of the reconnaissance is to assign a predominant surface type description to each polygon as either having either:

- evaporite crust,
- capillary crust,
- no developed crust, or
- surface water

Field personnel may find that visually interpreted polygons may benefit from subdivisions that better delineate these general surface types. However, it is important that field personnel recognize that there may be a number of inclusions and boundary generalizations within a polygon due to the 15 meter MMU. If field personnel do believe that a map polygon should be subdivided, the shortest apparent distance across the differing landscape features should be determined to ensure that they consistently exceed 15 meters. Polygons should not be subdivided based solely on moisture status since that distinction will be made from the Landsat teeter point method. If a mapped polygon is to be divided, field personnel should draw the approximate shape of the feature on their field map and collect GPS data to ensure that it is properly digitized afterwards. If the feature is unambiguously traceable on the field map, then a single GPS coordinate should be collected anywhere on the new boundary to verify the specific feature on the image. If the subdivided area is not clearly visible on the image in the map, GPS boundary coordinates should be collected. For a simple linear border that divides a polygon, two GPS coordinates are sufficient. More coordinates are necessary for complex boundaries, but generally spaced by 8 meters or more to capture the overall shape at a scale that is appropriate to the MMU.

The field crew may encounter one or more inclusions of non-protective surfaces within a polygon that otherwise has protective characteristics, but those inclusions are too small to justify a mapped polygon based on the MMU. A description of the nature of these inclusions should be recorded, and a GPS coordinate should be collected for a large representative example of these inclusions in case it is necessary to return and install in situ monitoring devices.

### **Field Measurements**

For polygons that are not predominantly covered by surface water, field personnel will identify a representative point within each polygon that typifies the surface condition. This survey point should be located at least 15 meters from the polygon boundary, and GPS coordinates will be recorded. If the predominant surface cover is a complex of multiple characteristics (e.g. ridge versus trough of prior tillage), the least protective surface type as judged by GPUAPCD staff will be used to represent the polygon. Three primary parameters will be recorded at each survey point:

- 1. predominant surface type (evaporite crust, capillary crust, or no crust),
- 2. crust thickness (cm), and
- 3. moisture (dry, slightly moist, moist, or saturated).

Based on these three observations and the criteria in section 4.1 of this report, the field site will be classified as protective or not protective. Additionally, six other parameters will be evaluated and recorded.

MacroRelief TypeCodeDescription1Platy

page 15

Attachment A, Monitoring and Enforcement Protocol for Brine BACM

- 2 Heaved
- 3 Extreme heaved
- 4 Flat uplifted
- 5 Cauliflower
- 6 Polygonal

#### Micro Relief Type

- Code Description
- 1 Powdery
- 2 Puffy
- 3 Cauliflower
- 4 Efflorescent
- 5 Loose

#### **Crust Hardness (marble test)**

- Code Description
- 0 No crust
- 1 Weak
- 2 Moderate
- 3 Strong
- 4 Hard

#### **Macro Relief Scale**

- Code Description
- 1 0 to 5.0 cm
- 2 5.0 to 10.0 cm
- 3 10 to 20 cm
- 4 20 to 30 cm
- 5 > 30 cm

#### Micro Relief Scale

| <u>Code</u> | <b>Description</b> |
|-------------|--------------------|
| 1           | 0 to 0.5 cm        |

- 2 0.5 to 1.0cm
- 3 1.0 to 2.0 cm
- 4 2.0 to 5.0 cm
- 5 5.0 to 10.0 cm
- 6 > 10 cm

#### **Erosion Type**

| <u>Code</u> | <b>Description</b> |
|-------------|--------------------|
| 1           | None               |

- 1 None
- 2 Surface abrasion

Attachment A, Monitoring and Enforcement Protocol for Brine BACM

- 3 Surface stripped
- 4 Blowout
- 5 Flutes
- 6 Other

## Inaccessible Polygons

There may be polygons in the map that were inaccessible to the field crew. In this case the analyst will judge the likely surface characteristics of the inaccessible polygons based on image tone/texture and geomorphic position compared to known surfaces in the same control area, as well as any ancillary information that may be available. A UAV may be used to collect high resolution photography and digital elevation data to better interpret conditions at the remote location. The following features should be apparent in high resolution photography and would contribute to the assignment of a protective status to inaccessible polygons.

- Heaving: thick, protective, evaporite crusts often become heaved along linear segments and can create a polygonal patchwork on an otherwise flat surface
- Macro-relief: thick, protective, capillary crusts generally develop a high degree of localized relief that has a cauliflower-like structure with protrusions that are at least 30 cm across. Heaving may also occur in these regions.
- Smooth upslopes: protective evaporite crusts form on low, flat areas and protective capillary crusts develop macro-relief, so the presence of relatively smooth surfaces on sloping or upslope positions might only have efflorescence or non-protective capillary crust.
- Color: It may be possible to distinguish the tan color of exposed soils from protective salt crusts that are generally shades of gray (or colored by red biological material). Emissive areas may have sand interspersed with some degree of heaved or cauliflower structure.

Each inaccessible polygon will be labelled as protective or not based on judgement of the surface type that makes up the majority of the polygon.

### **Compliance Testing**

Prior to testing compliance, maps of Brine BACM surface types must be updated with any subdivisions of polygons that were drawn by field personnel and judgements on the condition of inaccessible polygons. GPS coordinates taken by the field crew will be overlain on imagery of the control area, and the map of surface types will be edited to match the field crew's drawing.

Each Brine BACM control area will be tested for compliance with required performance criteria separately. A map of surface type classification will be generated for each control area by recoding polygons as:

- 1. not protective,
- 2. protective capillary brine crust, or
- 3. protective evaporite salt crust.

This map of surface type classification for each control area will be rasterized at a 15 meter spatial resolution.

Areas that are protected by high moisture content will be determined using the approved teeter point method with Landsat imagery. The resulting shallow flood map will be coded with a value of 4 for wet surfaces, and 0 for dry surfaces. The shallow flood map will be combined with the rasterized protective cover map by assigning the maximum value of either map. The value of each pixel value (1-4) in the combined map will be calculated and used in the following two equations to generate the compliance statistic:

$$\frac{N_{>2} + \min(N_2, N_{>1} * C)}{N_{>0}}$$
[Eqn 2]

where  $N_i$  is the count of pixels with value *i* and *C* is the maximum allowed ratio of capillary to other protective surfaces (currently 1/3).

Equation 1 calculates the surface extent percentage of qualified Brine BACM surfaces within each control area. Equation 2 provides the percentage cover of the capillary brine crust in order to determine if it is within that allowed for a Brine BACM control area. The Brine BACM area must meet two conditions (Tests) for the area to be in compliance with required conditions.

- 1) Test 1: the value of N<sub>>1</sub>/N<sub>>0</sub> must exceed the percentage cover as defined by the Shallow Flooding wetness curve (Figure A1) [Eqn 1]. And
- 2) Test 2: the value of N<sub>2</sub> must not exceed more than one third of the required complaint cover [Eqn 2].

The calculations are demonstrated in the following example where 75% cover of qualifying protective surfaces is required per the Shallow Flooding wetness curve:

page 18

| Surface Type                      | <u>Value</u> | <u>Count</u> |
|-----------------------------------|--------------|--------------|
| Emissive (Non-protective)         | 1            | 2,807        |
| Protective capillary brine crust  | 2            | 3,502        |
| Protective evaporite salt deposit | 3            | 1,001        |
| Wet                               | 4            | 4,008        |
| Total                             |              | 11,318       |

Where  $N_{>1} = 8,511$ ,  $N_{>2} = 5,009$ , and  $N_{>0} = 11,318$ .

| Test 1 = | 8,511/11,318                             | = 75.2%                        | (pass test 1) |
|----------|------------------------------------------|--------------------------------|---------------|
| Test 2 = | <u> 5,009 + minimum (3,502, 8,511/3)</u> | = <u>5,009 + 2,837</u> = 69.3% | (fail test 2) |
|          | 11,318                                   | 11,318                         |               |

In this example, even though the combined cover of protective crusts and wet surfaces is greater than the required 75% (Test 1), the limit on the extent of capillary brine crust creates a noncompliant value of 69.3% (Test 2). No more than one-third of the required compliance cover is permitted to consist of capillary brine crust.

#### Updating Surface Maps

Surface cover maps will be updated annually, or for specific Brine BACM control areas within 30 days of any ordered maintenance and/or re-flooding activities. Areas that appear to have no significant changes from imagery used in the prior mapping efforts can maintain the prior polygon boundaries, but polygons must be checked in the field as described above in the Field Modifications section and new field data must be collected. The location of representative field sampling points for polygons may change each time. For resurveys associated with ordered maintenance or re-flooding, only affected polygons and field survey points need to be assessed prior to recalculation of the compliance statistic.

### **References**

Cited references are listed in Section 7.0 of the main document.

(Blank Page)

# Attachment B

# Protocol for Operation and Maintenance of Owens Lake Brine with BACM Backup (Brine BACM)

(Blank Page)

Attachment B, Operation and Maintenance Protocol for Brine BACM

# Attachment B

# Protocol for Operation and Maintenance of Owens Lake Brine with BACM Backup (Brine BACM)

#### January 2016

#### 1.0 SITE SELECTION, OPERATION, AND MAINTENANCE

This Attachment summarizes the methods to be used by the Los Angeles Department of Water and Power (LADWP) to select, operate, and maintain Brine with BACM Backup (Brine BACM) on Owens Lake.

#### **1.1** Brine BACM Site Selection

Brine BACM can be implemented anywhere on Owens Lake for dust control in areas where there is existing Shallow Flooding infrastructure. If an area is outside of existing Shallow Flooding infrastructure, it may be allowed by the District provided an alternate source of water is in place to provide water, as needed.

#### 1.2 Site Operation

Site operations and maintenance activities are expected to be minimal since the component stable surfaces that contribute to the required aggregated surface coverage in Brine BACM areas generally change slowly. Each Brine BACM area shall be operated such that the total areal extent of the surface cover of the qualifying surfaces are maintained such that they meet or exceed those as defined by the Shallow Flooding control efficiency curve (or its approved refinement).

The required surface cover within each Brine BACM area can be achieved solely with water or solely with an evaporite salt deposit (>1.5 cm thickness). Thus compliance can be determined based on the presence of these two surfaces by themselves. However, a capillary brine crust must be accompanied by either water and/or an evaporite crust. The proportion of capillary brine crust within a Brine BACM area cannot exceed greater than one-third of the total required surface cover as determined by the Shallow Flooding cover curve. The total combined mosaic of stable Brine BACM surfaces shall be substantially evenly distributed across the dust control area.

Qualifying stable surfaces for Brine BACM shall be defined as consisting of water or hydrologically saturated surface, evaporite salt deposit, and capillary salt crust with the following conditions:

- 1) Water: Standing water or hydrologically saturated surface as defined by Shallow Flooding BACM. Water may have any salinity.
- 2) Evaporite Salt Deposit: A crystalline deposit of salt minerals precipitated on the surface of the lakebed from evaporation of Owens Lake brine. This does not include the development of salt crust by upward capillary movement of saline fluids through the soil column. The evaporite salt deposit must have an average thickness of 1.5 centimeters or more and may be either wet or dry
- 3) Capillary Brine Salt Crust: A crust enriched in salt minerals formed at the soil surface by upward capillary movement of water through the soil. The crust typically consists of a mix of salt minerals and soil particles in various proportions. The capillary salt crust must have an average overall thickness of 10 centimeters or more and may be either wet or dry.

In order to maintain required dust control efficiency within the Brine BACM areas, periodic addition of water or maintenance activities may be required to restore areas that have deteriorated or that fail to meet the necessary aggregated surface coverage of the three component stable brine surfaces. The conditions that trigger addition of water or maintenance activities are discussed below.

### 1.2.1 Periodic Site Inspection

The District will inspect all Brine BACM sites regularly to ensure that that the required stable surfaces are being maintained. The District's site inspection program will consist of a combination of aerial inspection conducted via Unmanned Aerial Vehicle (UAV) and/or helicopter inspection and ground-truth observations by human inspectors as determined useful by the District. Each of these elements is discussed below. Additionally, all Brine BACM areas will be included in regular sand flux monitoring and dust plume observations conducted by the District following procedures in the 2016 Dust ID protocol (GBUAPCD, 2016c).

## 1.2.1.1 Aerial Inspection

Aerial inspections are required of Brine BACM areas because of the difficulty in foot or vehicle access in these areas and their large size. Aerial inspections will be conducted using a UAV (or when needed, by LADWP helicopter) and satellite imagery. UAVs are capable of collecting ground terrain information that can be used to create a digital elevation model (DEM) that can be useful in mapping the extent of different surfaces present. Additionally, if LIDAR is collected over the Brine BACM area, it may be used to generate an accurate DEM that can be used as part of the Brine BACM monitoring program. Photos and imagery collected during aerial inspection may be used to map the extent of surface cover in the Brine BACM areas and to help with re-flooding and maintenance activity decision-making.

Aerial inspection of the Brine BACM areas will also be conducted by UAV in order to conduct Induced Particulate Emission Testing (IPET) as described in Attachment A (*Monitoring and Enforcement Protocol for Brine BACM*).

## 1.2.1.2 Ground-Based Observations

Ground observations are usually needed to complement aerial and satellite-based collections. Information that may be collected from ground observations include:

1. Important features that cannot be evaluated remotely with confidence, such as crust thickness and surface integrity.

2. Information needed to calibrate and ground-truth air photos or satellite imagery or remotely sensed data and interpretations.

3. Tactical, spot observations where remote observations are impractical, inconvenient, or in need of calibration.

Initially, observations are expected to be tied to key surface attributes (crust thickness and presence of loose and fine material deposition). Due to difficult access across most Brine BACM areas, ground observations will generally be focused around the perimeter of Brine BACM areas.

### 1.3 Site Maintenance and Re-Flooding

In this section, re-flooding and maintenance triggers are described. The actions may be triggered and ordered for a whole Brine BACM area, or for any portion of an area as determined by the APCO.

## 1.3.1 Re-Flooding Triggers

Re-flooding of will be required when a Brine BACM area deteriorates such that it is determined to be potentially emissive or when the aggregate cover of Brine surfaces (as defined in Section 1.2) fall below a critical level. When a re-flood order has been made by the APCO, then a Brine BACM area shall be re-wetted (with water of any salinity) such that the wetness cover is as required by the Shallow Flooding wetness cover-control efficiency curve within 37 days of such order. Re-flooding may be ordered for a whole or partial Brine BACM area. Conditions that may trigger a re-flood order by the APCO are given below:

- The District will utilize the Induced Particulate Erosion Test (IPET) method developed for monitoring of TwB2 to determine if Brine BACM area surfaces are starting to become emissive and to advise LADWP with erosion potential alerts.
   IPET testing will follow procedures provided in Attachment C of the 2014 Stipulated Judgement (2014 SJ). (Also described in the Monitoring and Enforcement Protocol for Owens Lake Brine With BACM Back-Up, Attachment A, Section 1.B.1)
- 2) Monitored sand flux at a SFM site exceeds 5 grams/cm<sup>2</sup>/day. Sand flux monitoring shall follow procedures in the 2016 Dust ID protocol (GBUAPCD, 2016c).
- 3) The total aggregated combined surface cover of the qualifying Brine BACM surfaces falls below 60% for areas requiring 99% control. Areas requiring less than 99% control will require re-flooding if the total aggregated cover of Brine BACM surfaces drops such that there is a 10% loss or more of control efficiency. In these cases, there does not need to be a level 3 erosion alert from IPET runs or active sand flux greater than 5 grams/cm<sup>2</sup>/day.
- 4) Observations of dust plumes and surface integrity indicate that the surface condition in a Brine BACM area has deteriorated such that it is potentially emissive. Dust plume observation and surface integrity observations will be used in conjunction with sand flux monitoring and/or IPET runs. Dust plume observation methods shall follow those in the 2016 Dust ID protocol (GBUAPCD, 2016c).

5) The APCO reserves the right to determine additional re-flood triggers based on supporting data and after consultation with LADWP.

In the event of re-flooding, once the area to which the order applies has been thoroughly wetted, it may continue to be operated as a Brine BACM areas provided it consists of the required total combined aggregated stable qualifying Brine BACM surfaces.

# 1.3.2 Maintenance Triggers

Maintenance will be undertaken on a Brine BACM area that does not meet the required aggregate cover of qualifying surfaces, provided the area has not been ordered for re-flooding by conditions in Section 1.3.1 (Re-Flooding Triggers, above). If it is feasible, maintenance activities may be conducted only on portions of a Brine BACM area to re-establish the required stable surface cover.

The goal of maintenance activities is to re-establish the total combined cover of qualifying stable surfaces within a Brine BACM area. Should maintenance activities be needed, the LADWP shall submit a maintenance plan to the District within 14 calendar days of written notification by the APCO. The maintenance plan shall be include a description of the activities planned and a schedule for their implementation. Upon approval by the APCO, the plan shall be implemented according to the approval schedule.

## 1.3.3 Maintenance Options

When and where data so indicate, maintenance will be undertaken to re-establish the required total aggregated coverage of Brine BACM surfaces. For long term operation of an area as Brine BACM, it is recommended that hypersaline Owens Lake brine be used for maintenance activities in order to create evaporite and capillary crusts that, given proper thickness, will meet performance criteria. Examples of maintenance activities that may be undertaken include, but are not limited, to the following.

- 1) Addition of Owens Lake brine to increase the surface coverage within a Brine BACM area.
- 2) Spreading of brine within a Brine BACM area to allow for better surface coverage.

3) The APCO reserves the right to approve additional maintenance activities based on supporting data and after consultation with LADWP.

## 2.0 REFERENCES

Cited references are listed in Section 7.0 of the main document.

# Board Order 160413-01 Attachment F

# 2016 Owens Lake Dynamic Water Management Plan



**Great Basin Unified Air Pollution Control District** 

157 Short Street, Bishop, CA 93514 Telephone (760) 872-8211
(Blank Page)

# 2016 Owens Lake

# **Dynamic Water Management Plan**



# Great Basin Unified Air Pollution Control District January 2016

### **Table of Content**

### <u>Section</u>

| 1.0 | BACKGR  | OUND A   | ND INTRO  | DUCTION                                                     | 1  |
|-----|---------|----------|-----------|-------------------------------------------------------------|----|
| 2.0 | DATA EV | /ALUATIO | ON METHO  | OD AND ANALYSIS CRITERIA                                    | 2  |
| 3.0 | SUMMA   | RY AND   | RECOMM    | ENDATIONS FOR THE DYNAMIC WATER MANAGEMENT PLAN             | 10 |
|     | 3.1     | MODI     | FIED DUST | SEASONS                                                     | 10 |
|     |         | 3.1.1    |           | ADJUSTMENTS FOR SPRINKLER IRRIGATION AREAS                  | 10 |
|     | 3.2     | DYNA     | VIC WATE  | R MANAGEMENT PLAN IMPLEMENTATION                            | 11 |
|     |         | 3.2.1    | RE-FLOC   | DDING ORDER                                                 | 12 |
|     |         |          | 3.2.1.1   | RE-FLOODING ORDER MORE THAN ONCE IN A ROLLING 6 YEAR        |    |
|     |         |          |           | PERIOD                                                      | 13 |
|     |         |          | 3.2.1.2   | RE-FLOODING ORDER LESS THAN ONCE IN A ROLLING 6 YEAR PERIOD | 13 |
|     | 3.3     | MONI     | TORING AI | ND TESTING OF DYNAMIC WATER MANAGEMENT PLAN AREAS           | 14 |
|     |         | 3.3.1    | SAND FL   | UX TEST                                                     | 14 |
|     |         | 3.3.2    | INDUCE    | D PARTICULATE EMISSION TEST (IPET)                          | 16 |
|     |         | 3.3.3    | DUST PL   | UME OBSERVATIONS AND SURFACE INTEGRITY OBSERVATIONS         | 17 |
|     | 3.4     | RELAT    | IONSHIP C | OF DWMP TO BRINE BACM AND TWB2 AREAS                        | 17 |
|     | 3.5     | SUMN     | 1ary of d | WMP AREAS                                                   | 18 |
| 4.0 |         |          |           |                                                             | 74 |
| 4.0 | KEFEKEI | NCES     |           |                                                             |    |

i

### LIST OF MAPS and FIGURES

| Figure 1 | Index map of dust control areas on Owens Lake                            | 6 |
|----------|--------------------------------------------------------------------------|---|
| Figure 2 | Map of areas included in the Dynamic Water Management analysis           | 7 |
| Figure 3 | Map of the different phases of dust control implementation on Owens Lake | 8 |
| Figure 4 | Map of the eligible Dynamic Water Management Plan areas                  | 9 |

#### LIST OF TABLES

| Table 1 | Number of SFM sites required per DWMP area during the modified end of the dust |    |  |  |
|---------|--------------------------------------------------------------------------------|----|--|--|
|         | season                                                                         | 15 |  |  |
| Table 2 | Summary table of recommended dust season modifications for DCAs in the Dynamic |    |  |  |
|         | Water Management Plan                                                          | 19 |  |  |
| Table 3 | Summary of DWMP areas by modified dust season                                  | 20 |  |  |

## **Abbreviations and Acronyms**

| APCO                 | Air Pollution Control Officer                                                                                                                             |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| BACM                 | Best Available Control Measure                                                                                                                            |
| CDFW                 | California Department of Fish and Wildlife                                                                                                                |
| cm                   | centimeter                                                                                                                                                |
| CSC                  | Cox sand catcher                                                                                                                                          |
| CSLC                 | California State Lands Commission                                                                                                                         |
| d                    | day                                                                                                                                                       |
| DCA                  | Dust Control Area                                                                                                                                         |
| District             | Great Basin Unified Air Pollution Control District                                                                                                        |
| Dust ID              | Dust Source Identification Program                                                                                                                        |
| Dust Year            | 365 day period starting on July 1 of one year and ending on June 30 of the following year                                                                 |
| Dust Season          | portion of the dust year when dust controls are operating. The standard dust season extends from October 16 of one year to June 30 of the following year. |
| DWP or LADWP         | City of Los Angeles Department of Water and Power                                                                                                         |
| DWMP                 | Dynamic Water Management Plan                                                                                                                             |
| g                    | grams                                                                                                                                                     |
| GBUAPCD              | Great Basin Unified Air Pollution Control District                                                                                                        |
| NAAQS                | National Ambient Air Quality Standard (for $PM_{10} = 150 \ \mu g/m^3$ for 24-hours)                                                                      |
| PM <sub>10</sub>     | Particulate matter 10 microns or less in size                                                                                                             |
| Regulatory shoreline | elevation contour of 3,600 feet above mean sea level                                                                                                      |
| SF                   | Sand flux, given in grams per square centimeter (g/cm <sup>2</sup> )                                                                                      |
| SFM                  | Sand flux monitoring site                                                                                                                                 |
| SIP                  | State Implementation Plan                                                                                                                                 |
| sq. mi.              | Square miles                                                                                                                                              |
| TwB2                 | Tillage with BACM Back-up                                                                                                                                 |

(Blank Page)

# 2016 Owens Lake

# **Dynamic Water Management Plan**



# **Great Basin Unified Air Pollution Control District**

#### January 2016

#### 1.0 BACKGROUND AND INTRODUCTION

Article 7 of the 2014 Stipulated Judgement between the Great Basin Unified Air Pollution Control District (District) and the Los Angeles Department of Water and Power (LADWP) commits the parties to work together to develop a Dynamic Water Management Plan (DWMP). The goal of the DWMP is to reduce the volume of water used on Owens Lake while still maintaining required dust control. The reasoning behind the concept of a DWMP is that lake bed surface erosion does not behave uniformly in time or space due to the diverse soils and surface conditions present and that there may be areas in which the dust season, during which dust controls are required, may be modified allowing for reduced water usage.

The dust season in the 2008 SIP (GBUAPCD, 2008) is defined as extending from October 16 to June 30 of the following year. During this 8 ½ month period dust control areas must meet the requirements as defined in the 2008 SIP. In recognition that the emissivity of areas are generally less at the end of the dust season, Shallow Flooding areas which are operated to achieve 99% control are permitted to follow a designated ramp down schedule which starts on May 15 and extends to June 30.

The October 16 to June 30 dust season was originally designated in the mid-1990's prior to any dust control implementation on the lake bed based on the overall timing of PM<sub>10</sub> exceedances measured at air monitoring stations located around Owens Lake. Until now, with the development of the DWMP, there was only one standard dust season applied to Owens Lake dust controls such that there were no modifications made to better fit the spatial and temporal timing of dust activity on different portions of the lake bed.

In 1999 and 2000, the District implemented a sand motion monitoring network on Owens Lake as part of the Owens Lake Dust Identification Program (Dust ID) in order to better characterize the surface wind erosion activity on the lake bed causing PM<sub>10</sub> violations at the 3,600 foot elevation regulatory shoreline. The sand motion monitoring network has been in place for over 15 years progressively changing as more is learned about the lake bed and dust control areas have been implemented.

This technical report was prepared as an analysis of the sand flux data from the Owens Lake Dust Identification (Dust ID) program as part of the development of the Dynamic Water Management Plan. The primary basis for this analysis is an evaluation of the sand flux data record collected for the past 15 years. The main goal of this analysis is to identify areas on the lake bed where surface activity starts later in the beginning of the dust year and/or ends earlier at the end of the dust year. This analysis evaluates if the dust season of the Shallow Flooding BACM areas can reasonably be modified to have a delayed start in the beginning of the dust season and/or an early end at the end of the dust season without jeopardizing air quality and causing violations of the NAAQS for  $PM_{10}$  at the regulatory shoreline.

#### 2.0 DATA EVALUATION METHOD AND ANALYSIS CRITERIA

Over 300 sand flux monitoring (SFM) sites (also called Sensist sites<sup>1</sup>) have been operated as part of the Dust ID program since 2000. The data record from these sites was included in this analysis to determine the timing, frequency and magnitude of the source area activity. The Sensit network has been dynamic over the years such that not all of the 300+ sites have been operated simultaneously. The Sensit network is evaluated regularly and adjustments are made, as needed, to best represent the source areas on the lake bed.

At the beginning of the Dust ID program, the lake bed had no dust controls in place and sites were installed on the lake bed in a grid pattern with 1 km spacing between Sensit sites. Starting in 2001 and 2002, as dust control measures were constructed on the lake bed and began operation, many of the original sites were removed. In other portions of the lake bed additional Sensit sites were added to the network as new dust sources became active. Most of the new sites were installed at locations to best represent the identified source area and were not located on a regular grid. At its peak, the Sensit network included over 200 sites operating at one time. In the 2015-2016 dust year, there are approximately 170 Sensit sites operating in the network.

<sup>&</sup>lt;sup>1</sup> A sand flux monitoring site consists of a sand trap (called a Cox sand catcher or CSC), a Sensit (an electronic sand motion monitor) and a datalogger system. The overall site is generally termed a "sand flux" or "Sensit" site.

The method of collection and processing of the data from each Sensit site follows a detailed procedure given in the Dust ID protocol (GBUAPCD, 2016a). The data record from each Sensit site contains both 5-minute and hourly sand flux values. The purpose of collecting the sand flux data is for input into the Dust ID air quality model in order to determine which areas on the lake bed cause violations of the Federal  $PM_{10}$  standard at the regulatory shoreline. However, the data in this analysis are being used to evaluate the spatial and temporal sand motion patterns on the lake bed. For this analysis, the hourly sand flux data was totaled for each day. Graphs of the cumulative daily sand flux for each year for each site in the Dust ID network were plotted in order to determine the pattern of sand flux both in the fall during the beginning of the dust season and in the spring at the end of the dust season. The graphs for areas in the DWMP areas are provided in GBUAPCD (2016b).

Criteria were established upon which to evaluate the sand flux data in the development of the DWMP. A list of the criteria is provided below:

### Data Analysis Criteria:

- 5 years or more of data record from before dust control implementation
- Date of first sand flux <a>> 5 g/cm²/day</a>
- Date of last sand flux <a>> 5 g/cm<sup>2</sup>/day</a>
- Frequency in number of years in which 5 g/cm<sup>2</sup>/day thresholds were measured in the beginning and end portions of the dust season
- Surface condition behavior of dust control areas operated under Variance Order Docket No. GB15-01

A minimum of 5 years of data from before dust control implementation was considered important for each area due to the dynamic nature of the lake bed and varied climatic conditions. An area with a representative SFM site with at least 5 years of data is considered to have experienced a full range of conditions that occur on the lake bed such that the emissivity of the surface is well characterized. A frequency of 1 or more in 5 years that the 5 grams/cm<sup>2</sup>/day threshold sand flux value was measured during the beginning and end portions of the dust season was considered significant. If elevated sand flux occurred at a frequency of less than 1 in 5 years (for example: 1 in 6 or more years) during the beginning and end portions of the dust season it was considered as not a regular condition of the lake bed surface at that location.

In July 2015, the Hearing Board of the Great Basin Unified Air Pollution Control District granted a regular variance for specific dust control areas from the requirement to meet the required Shallow Flooding wetness cover starting October 16 per the 2008 SIP Board Order (Docket No.

Attachment F

GB15-01, GBUAPCD, 2015). The variance along with the necessary permits and approvals from California Department of Fish and Wildlife (CDFW) and California State Lands Commission (CSLC) allowed LADWP to postpone wetting of the lake bed surface on 7.46 square miles (4,774.4 acres) of Shallow Flooding areas. The DCAs were selected through a combination of a technical analysis of the sand flux history and soil type and the habitat value allowing LADWP to save water on the lake bed. The delayed Shallow Flooding start also served as a precursor test of the proposed DWMP.

During the delayed start of the DCAs in the variance, the District conducted visual observations of surface conditions within each area to determine if the areas were behaving as expected based on the sand flux history analysis and were not deteriorating and becoming potentially emissive. In November and December 2015, two of the DCAs (T17-2 and T21) in the variance were observed to be sources of significant dust. The active source areas were mapped using GPS and video from the dust camera network. Based on the observed dust activity the beginning portion of the dust season for portions of these two DCAs areas was not modified but kept as October 16 (see discussion of these areas in GBUAPCD, 2016b). Other DCAs included in the variance remained stable and did not become active dust sources.

The areas on the lake bed included in this analysis consist of areas that are either currently controlled using Shallow Flooding BACM or areas that are currently uncontrolled but will have controls implemented as part of the upcoming dust control construction (i.e. Phase 9/10 areas). Additionally, areas which are part of the brine testing or are controlled with a variation of Shallow Flooding such as Tillage With BACM Back-Up (TwB2) were also included in this analysis.

#### Areas included in analysis

- Existing Shallow Flooding control areas
- Phase 9/10 areas
- TwB2 areas
- Phase 7a areas (excluding completed gravel areas)
- Brine areas

#### Areas NOT included in analysis

- Existing Gravel areas (Phase 8, T35, T1A-3)
- Managed Vegetation area in T5 through T8 (Farm)
- Sand Fence area (T1A-1)
- Channel Area

The following maps are provided to help the reader with the data analysis.

- Figure 1: Index map of the dust control areas on Owens Lake.
- Figure 2: Map of areas included in the Dynamic Water Management analysis.
- Figure 3: Map of the different phases of dust control implementation.
- Figure 4: Map of the recommended eligible Dynamic Water Management Plan areas.



Figure1. Index map of dust control areas on Owens Lake.



Figure 2. Map of areas included in the Dynamic Water Management analysis.



Figure 3. Map of the phases of dust control implementation on Owens Lake.

8

**Figure 4.** Map of the recommended eligible Dynamic Water Management Plan areas. The modified DWMP seasons are shown for conventional pond and lateral Shallow Flooding areas. The dust season for DWMP areas irrigated with sprinklers shall start two weeks earlier and end one month later than shown on the map (see Section 3.1.1).



# 3.0 SUMMARY AND RECOMMENDATIONS FOR THE DYNAMIC WATER MANAGEMENT PLAN

#### 3.1 Modified Dust Seasons

Based on the pattern of surface erosion across the lake bed three modified dust seasons have been identified for the DWMP for Shallow Flooding areas. The modified dust seasons are in addition to the standard dust season provided in the 2008 SIP (GBUAPCD, 2008). The modified dust seasons for the DWMP have three different start dates in the beginning of the season that reflect the timing of the start of source area activity across the lake bed.

#### Standard Dust Season (as defined in the 2008 SIP)

October 16 to June 30 (with ramping of 99% control areas after May 15)

#### Modified Dust Seasons for Dynamic Water Management Plan

- 1) October 16 April 30
- 2) December 1 April 30
- 3) January 16 April 30

The earliest start of the modified dust seasons is October 16 for areas in which surface activity is regularly observed early in the dust year. These early start areas consist of coarser textured soils in the southern portion of the lake bed and just to the east of Bartlett Point. The second modified start date is December 1 and is recommended for areas in which the sand flux record shows that significant surface activity and erosion is not observed until December to early January. The third modified start date is January 16 for areas that do not become emissive until January or later. The DCAs in this January 16 start group primarily consist of fine textured soils in which significant surface activity and dust emissions are delayed until the surface conditions break down in the winter months (mid-January or later).

All three modified dust seasons for the DWMP end on April 30. For these eligible DCAs, the sand flux record showed that significant sand motion and dust emissions ceased by the end of May or earlier. It is recommended that wetting of these DCAs continue through April 30 at which time water inflows for dust control may end and that due to gradual dry down of areas throughout the month of May sufficient dust control will be provided.

#### 3.1.1 Adjustments for Sprinkler Irrigation Areas

Since the dates of the modified DWMP seasons assumes that there is an initial ramp-up of water at the beginning of the dust season and gradual drying of the DCAs at the end of the dust season, the modified DWMP seasons (as given in Section 3.1, above) only apply to eligible areas

Attachment F

where conventional Shallow Flooding is in place. Conventional Shallow Flooding areas are those that are wetted through ponding or irrigation laterals and bubblers.

For eligible areas that are Shallow Flooded with sprinkler irrigation, the modified DWMP seasons shall be adjusted to provide water two weeks earlier in the beginning of the dust season and one month later at the end of the dust season. The adjustments to the DWMP seasons for sprinkler irrigated Shallow Flooding areas are provided below.

#### Modified Dust Seasons Adjusted for Sprinkler Irrigated Shallow Flooding Areas

- 1) October 16 May 31
- 2) November 16 May 31
- 3) January 1 May 31

The two week adjustment at the beginning of the dust seasons allows for wetting of the surface prior to the start of the modified seasons in Section 3.1 in order to simulate a ramp-up as provided in conventional Shallow Flooding areas. Irrigation is required during the month of May, since, unlike conventional shallow flooding area, dry down is immediate in sprinkler areas such that there is little to no dust control provided at the end of the dust season within a sprinkler area once the water is shut off.

## 3.2 Dynamic Water Management Plan Implementation

The recommendations provided here for the modified DWMP dust seasons are based on sand flux data from prior to dust control implementation in an area. Thus it represents the best estimate of what the surface activity might be should dust controls be removed from an area. However, it is unknown if and how the operation of dust controls within an area may change the nature of the surface activity both in time and space.

A test of the DWMP concept was conducted on 7.46 square miles of Shallow Flooding areas included in the fall 2015 variance Docket No. GB15-01 (GBUAPCD, 2015) allowing a delay in achieving full wetness cover from October 16 to either December 1 or January 16. During the variance period, portions of two DCAs (T17-2 and T21) became emissive in November and December 2015 such that the LADWP rewetted them early upon the request of the District. The active portions of these two areas were removed from the modified early dust season start in the DWMP (GBUAPCD, 2016b). The remaining DCAs in the variance remained stable and did not become emissive dust sources.

All areas operating with modified DWMP dust seasons must be monitored and observed as part of the District's Dust ID program and through use of the Induced Particulate Emission Test (IPET) methodology developed as part of the Tillage With BACM Back-Up (TwB2) monitoring and enforcement protocol (see Attachment C of 2014 Stipulated Judgement). Furthermore, it is required that the modified dust seasons for the DWMP have the provision that an area must be re-wetted (re-flooding) quickly if monitoring and observations show that the surface conditions within an area deteriorate such that they become potentially emissive. The goal of re-flooding is to bring an area back into fully compliant dust control such that there are no exceedances caused by emissions from an identified area.

## 3.2.1 Re-Flooding Order

Re-Flooding will be required when a DWMP area deteriorates such that it is determined to be potentially emissive. When this determination has been made and a written re-flood order has been made by the APCO, then LADWP shall, re-flood a DWMP area so as to re-establish fully compliant Shallow Flooding in accordance with the most current Shallow Flooding BACM requirements. The wetness cover requirement shall be determined by the Shallow Flooding wetness cover curve<sup>2</sup> that shows the relationship between wetness cover and control efficiency for Shallow Flooding BACM areas.

The length of time to achieve full wetness cover is dependent on the amount of area that must be re-flooded and the method of irrigation.

For DCAs with conventional Shallow Flooding irrigated with laterals or ponds: If the total amount of DWMP area that needs to be re-flooded is less than 25% of the total extent of area being operated under the DWMP then re-flooding must occur within 15 calendar days of a re-flood order being issued. If the total amount of DWMP area that needs to be re-flooded is 25% or more of the total extent of area being operated under the DWMP then the re-flooding must occur within 21 calendar days of a re-flood order being issued. This re-flooding compliance schedule is set with the goal of achieving fully compliant dust control as soon as possible and with the recognition of the limitations in the existing water delivery infrastructure.

## For DCAs with sprinkler Shallow Flooding:

Shallow Flooding areas irrigated with sprinklers shall be re-flooded within 15 calendar days of a re-flood order being issued regardless of the amount of DWMP area that is ordered.

A re-flooding order shall be issued for entire or partial DWMP areas based on the results of monitoring and testing. For example, if only a portion of a DWMP area fails the testing and

<sup>&</sup>lt;sup>2</sup> The Shallow Flooding wetness cover curve may be refined through testing. Any approved refinement of this curve can be used to determine the wetness cover required should a DWMP area be ordered for re-flooding.

monitoring conditions (items 1-3 summarized below and described in Section 3.3) then only that portion of the area associated with the monitoring and testing shall be included in the reflooding order. The APCO will determine the areas associated with monitoring and testing results, in consultation with LADWP. Re-flooding orders are not appealable by the LADWP to the District Governing Board, Hearing Board, or any other agency.

Conditions that may trigger a re-flood order by the APCO are given below. The primary basis for a re-flooding order will be the results of sand flux monitoring and/or IPET testing. Details of how each item will be monitored are provided in Section 3.3.

- 1) Sand flux at a sand flux monitoring (SFM) site within a DWMP area exceeds 5 grams/cm<sup>2</sup>/day.
- 2) Deterioration of the lake bed surface in a DWMP area such that it is a potentially emissive state. A potentially emissive state will be determined by using the TwB2 monitoring and enforcement protocol (see Level 3 – Mitigation Action as described in Attachment C to the 2014 Stipulated Judgement).
- 3) Dust plume and surface integrity observations. Dust plume and surface integrity observations will be used in conjunction with sand flux monitoring and/or IPET testing to determine if an area is deteriorating and requires re-flooding.

## 3.2.1.1 Re-Flooding Order More than Once in a Rolling 6 Year Period

Once an entire or partial DWMP area has been ordered for re-flooding more than once in a rolling 6 year period, that entire or partial area subject to the re-flood order may no longer operate with a modified DWMP dust season and must operate under the standard October 16 to June 30 dust season. The foundation for eligibility of an area in the DWMP is that an area is not emissive during the modified start or end periods of the dust season. If an area is identified for re-flooding multiple times within a continuous rolling six year period then the basis for inclusion in the DWMP is broken and the area will be required to revert back to the standard October 16 to June 30 dust season.

# <u>3.2.1.2</u> Re-Flooding Order Less than Once in a Rolling 6 Year Period Should a re-flooding order be issued by the APCO for a DWMP area less than once in a rolling six year period, that re-flooding order shall only apply to the modified start or end period upon which the area was identified for re-flooding and not to the entire dust year. Examples include:

<u>i. Re-Flooding Order in Modified Fall Season</u>: If the surface of a DWMP area, scheduled to be in full compliance by January 16, deteriorates in November causing a re-

flooding order to be issued by the APCO, that area must then be re-wetted according to the schedule provided in Section 3.2.1 for the remainder of the fall period but that DWMP area will be allowed to shut down for the modified spring season.

<u>ii. Re-Flooding Order in Modified Spring Season</u>: If the surface of a DWMP area deteriorates in the modified spring season causing a re-flooding order to be issued by the APCO, that area must re-wetted according to the schedule provided in Section 3.2.1 for the remainder of the dust year (until June 30), however, the date for wetting in the fall period would not change.

3.3 Monitoring and Testing of Dynamic Water Management Plan Areas The District will use the monitoring tests set forth below to ensure DWMP areas provide the emission reduction required on the Owens Lake bed. The District acknowledges that the performance criteria set forth below may be more stringent than is necessary to meet the percent emission reduction requirement, however, DWMP did not go through the BACM development process set forth in the 2008 Owens Valley PM<sub>10</sub> State Implementation Plan (GBUAPCD, 2008). Therefore, in order to provide assurance that DWMP areas will provide the high level of public health protection required for BACM, the District will initially require that DWMP areas pass the following monitoring thresholds. During the first year of DWMP operation, the District will meet regularly with the LADWP to review and evaluate DWMP performance. After one full year of DWMP operation experience, the APCO will consider revising the DWMP performance criteria.

#### 3.3.1. Sand Flux Test

- a) Each DWMP area will be instrumented by LADWP with sand flux monitoring (SFM) sites (Sensit and CSCs) during the modified start and end periods. The locations of SFM sites at the modified start and modified end periods of the dust season are anticipated to be different due to the variation in the pattern of existing wetness during these two periods. The locations of SFM sites shall be determined by the LADWP in coordination with the District.
  - i) The number of SFM sites at the modified start of the dust season will be proportional to the areal extent of the DWMP area. All DWMP areas will require at least one SFM site. Proportionally more SFM sites are required for DWMP areas greater than 160 acres such that there is approximately one SFM site per 160 acres of DWMP area.

 ii) During the modified end period of the dust season, the LADWP shall install SFM sites incrementally in stages as a DWMP area dries. The number of SFM sites is provided in Table 1 below.

**Table 1.** Number of SFM sites required per DWMP area during themodified end of the dust season.

| Drying Stage | Exposed Lake bed   | Number of SFM sites   |  |
|--------------|--------------------|-----------------------|--|
| 1            | Less than 50 acres | 0                     |  |
| 2            | 50 – 160 acres     | 1                     |  |
| 3            | >160 acres         | 1 per every 160 acres |  |

- b) LADWP will pair CSCs with Sensits, radio equipment and dataloggers programmed to record 5-minute sand motion data. All Sensit data will be reported electronically daily to the District. Sand catches from the SFM sites will be weighed and reported to the District within 7 calendar days of collection in the field. Sand motion data from the CSCs and Sensits will be processed to calculate the sand flux history of a site per the protocol set forth in the 2016 Dust ID Protocol (GBUAPCD, 2016a).
- c) During the modified start of the dust season all sand flux monitoring equipment will be installed and operational by LADWP no later than October 16. During the modified end of the dust season all SFM sites will be installed and operational by LADWP within 7 calendar days of reaching each drying stage. LADWP shall inform the District of all SFM site installations within 7 days of installation. Failure to deploy monitoring equipment may result in notices of violation and/or re-flood orders from the APCO.
- d) SFM sites installed for monitoring in the modified start of the dust season may be removed from a DWMP area once the modified dust season has started for each DWMP area or once the site location is endanger of getting flooded. The LADWP shall inform the District of all SFM site removals within 7 calendar days of their removal date. SFM sites installed for monitoring of the modified end of the dust season may be removed from a DWMP area after June 30.
- e) All SFM sites shall be installed, operated and maintained according to the 2016 Dust ID Protocol (GBUAPCD, 2016a).
- f) The APCO may issue a partial or full DWMP area re-flood order if sand flux exceeds 5.0  $g/cm^2/day$  at any sand flux site within a DWMP area.

- g) The APCO acknowledges that the sand flux triggers may be conservative for DWMP areas located away from the regulatory shoreline. The APCO may adjust the sand flux trigger value on a case-by-case basis for each DWMP area based on its distance from the regulatory shoreline or other factors.
- h) The APCO reserves the right to adjust the above criteria based on supporting data and after consultation with LADWP.

#### 3.3.2. Induced Particulate Emission Test (IPET)

- a) The District will utilize the Induced Particulate Emission Test (IPET) method developed for monitoring of TwB2 to determine if DWMP area surfaces are starting to become emissive during the modified start and modified end seasons and to advise LADWP with erosion potential alerts.
- b) IPET testing will follow procedures provided in Attachment C of the 2014 Stipulated Judgement (2014 SJ).
- c) The District will give LADWP field operations staff at least 24 hour notice of the time and place for RCWInD runs in order to allow LADWP staff an opportunity to observe those tests. LADWP staff does not need to be present for RCWInD testing to be used to call erosion alerts.
- d) Three erosion alert levels are set using the IPET method: 1) an <u>early warning</u> of possible surface stability deterioration, 2) a <u>warning</u> level to alert LADWP of a potential breakdown of the surface stability and to advise voluntary maintenance efforts, and 3) a <u>mitigation</u> action level to require re-flooding of all or part of a DWMP Area. The IPET method will be used to determine erosion alert levels as follows:
  - Level 1 An erosion <u>early warning</u> is indicated when any visible dust is observed to be emitted from a surface or particles are dislodged when the RCWInD is flown at a height below one half of H<sub>t</sub>. Voluntary mitigation may be appropriate to prevent further surface degradation.
  - ii. Level 2 An erosion warning is indicated when any visible dust is observed to be emitted from a surface when the RCWInD is flown at a height below H<sub>t</sub> and above one half of H<sub>t</sub>. Voluntary mitigation is advised to prevent further surface degradation.

 iii. Level 3 – <u>Mitigation</u> action is required if visible dust is observed to be emitted from a surface when the RCWInD is flown at a height of H<sub>t</sub> or higher. If ordered by the APCO, LADWP must re-flood all or part of a DWMP area that triggers a Level 3 alert.

The APCO acknowledges that warning and mitigation triggers may be conservative. The warning and mitigation trigger values may be adjusted on a case-by-case basis by the APCO for each DWMP area based on its distance from the regulatory shoreline or other considerations. After one year of experience with DWMP and the IPET test, LADWP and the District will meet to discuss the results of the testing and consider adjustments to the triggers.

e) The APCO reserves the right to adjust the IPET criteria based on supporting data and after consultation with LADWP.

#### 3.3.3. Dust Plume Observations and Surface Integrity Observations

- a) The District will conduct regular inspection of DWMP areas and conduct dust plume observations on DWMP areas to determine if DWMP area surfaces are starting to become emissive during the modified start and modified end seasons.
- b) Dust plumes will be observed by a combination of visual observation, photography, or video following procedures provided in the 2016 Dust ID Protocol (GBUAPCD, 2016a).
- c) Surface Integrity observations will be conducted monthly or as needed during the modified start and modified end dust seasons to document the condition and potential emissivity of DWMP areas. Conditions including, but not limited to, the presence or absence of loose soil deposits and salt efflorescence will be used to evaluate the overall stability of DWMP areas.
- d) Dust plume observations and surface integrity monitoring will be used in conjunction with the above described sand flux and IPET tests as a basis for an APCO re-flood order.

## 3.4 Relationship of DWMP to Brine BACM and TwB2 Areas

Due to the slow changes observed within DCAs that are operated with the newly defined Brine BACM, it is reasonable to expect adequate control prior to the beginning and after the end of the modified dust season such that they may operate under the provisions of the DWMP. Brine BACM areas may follow testing and monitoring provisions required for Brine BACM areas instead of those provided here in Section 3.3.

DCAs operating under the provisions for Tillage With BACM Back-up (TwB2) may not participate in the DWMP even if designated as potential candidates based on the analysis presented in GBUAPCD (2016b). All areas being operated as TwB2 areas must follow all operation, maintenance, monitoring and testing protocols for TwB2. If a TwB2 area is ordered for reflooding, it may participate in the DWMP once it has achieved fully compliant wetness coverage as long as the tillage features have been flattened and the area smoothed prior re-flooding such that the soils are reconsolidated and provided written approval by the APCO.

#### 3.5 Summary of DWMP Areas

A summary table of the recommended dust season for each of the 44 DCAs in the DWMP is given in Table 2. An overall summary of the number of areas and the areal extent in each DWMP season is provided in Table 3. The total extent of the areas recommended for modified dust season as part of the DWMP is 13.15 square miles (8,416 acres). The supporting analysis of the data from the Sensit sites within each DCA and graphs of the cumulative daily sand flux plotted for each year of data before dust control implementation is available in the supporting technical report for the Dynamic Water Management Plan (GBUAPCD, 2016b).

The recommended dust season is primarily based on the analysis of sand flux data from before dust control implementation within each dust control area as well as the surface conditions and stability observed in areas included in variance Docket No. GB15-01. Recommendations are given in Table 2 for change to the beginning of the dust season as well as to the end of the dust season. The recommendations for DWMP dust season modifications are given for conventional Shallow Flooding and Brine BACM areas. For areas irrigated with sprinklers, the DWMP season shall be further adjusted so that irrigation starts two weeks earlier in the beginning of the dust season and end one month later at the end of the dust season.

Ten of the DCAs were split into two parts such that the recommended dust season is different in either side of the split (shown with grey cells in Table 2). If the operation of these DCAs cannot be split to accommodate the different dust seasons then the entire DCA must be operated to the longer of the two dust seasons.

As many of the existing and potential dust control areas on the Owens Lake bed fall under the jurisdiction of the California State Lands Commission and other responsible agencies, the LADWP must secure the appropriate approvals, leases and permits prior to implementing the modified dust seasons in the Dynamic Water Management Plan. Nothing in this report is intended to give any responsible agency any authority beyond their authority under law. Therefore, listing of these eligible areas in Table 2 should be considered as a preliminary step to seeking full approval for implementation of the DWMP.

**Table 2**: Summary table of recommended dust season modifications for eligible DCAs in the DWMP. DCAs split with two seasons are shown in grey.

|    | Label           | Recommended<br>DWMP start | Recommended<br>DWMP end | Square Miles | Acres  |
|----|-----------------|---------------------------|-------------------------|--------------|--------|
| 1  | C2-L1 (south)   | 16-Oct                    | 30-Apr                  | 0.035        | 22.1   |
| 2  | C2-L1 (north)   | 1-Dec                     | 30-Apr                  | 0.044        | 28.3   |
| 3  | DuckPond-L1     | 16-Jan                    | 30-Apr                  | 0.158        | 101.3  |
| 4  | DuckPond-L2     | 16-Jan                    | 30-Apr                  | 0.014        | 9.2    |
| 5  | T1-1            | 1-Dec                     | 30-Apr                  | 0.242        | 155.0  |
| 6  | T1A-2_a         | 16-Oct                    | 30-Apr                  | 0.399        | 255.3  |
| 7  | T1A-2_b         | 16-Oct                    | 30-Apr                  | 0.693        | 443.5  |
| 8  | T2-1            | 16-Oct                    | 30-Apr                  | 0.521        | 333.2  |
| 9  | T2-2            | 16-Oct                    | 30-Apr                  | 0.209        | 133.9  |
| 10 | T5-3            | 16-Jan                    | 30-Apr                  | 0.221        | 141.4  |
| 11 | T5-3 Addition   | 16-Jan                    | 30-Apr                  | 0.123        | 78.4   |
| 12 | T9-N            | 16-Jan                    | 30-Apr                  | 0.388        | 248.2  |
| 13 | T9-S            | 1-Dec                     | 30-Apr                  | 0.070        | 44.6   |
| 14 | T10-1           | 1-Dec                     | 30-Apr                  | 0.699        | 447.5  |
| 15 | T10-2           | 16-Jan                    | 30-Apr                  | 0.307        | 196.7  |
| 16 | T10-2_a         | 16-Jan                    | 30-Apr                  | 0.442        | 282.8  |
| 17 | T10-2_b         | 16-Jan                    | 30-Apr                  | 0.644        | 412.3  |
| 18 | T10-3           | 16-Jan                    | 30-Apr                  | 0.279        | 178.6  |
| 19 | T10-3 (brine)   | 16-Jan                    | 30-Apr                  | 0.159        | 101.8  |
| 20 | T10-3-L1 (west) | 16-Jan                    | 30-Apr                  | 0.169        | 108.1  |
| 21 | T10-L1          | 16-Jan                    | 30-Apr                  | 0.064        | 41.1   |
| 22 | T12-1           | 16-Jan                    | 30-Apr                  | 0.343        | 219.4  |
| 23 | T13-1 (south)   | 16-Jan                    | 30-Apr                  | 0.238        | 152.6  |
| 24 | T13-1 Addition  | 16-Jan                    | 30-Apr                  | 0.125        | 79.7   |
| 25 | T16             | 16-Jan                    | 30-Apr                  | 1.680        | 1075.3 |
| 26 | T17-1           | 16-Jan                    | 30-Apr                  | 0.826        | 528.8  |
| 27 | T17-2 (north)   | 16-Oct                    | 30-Apr                  | 0.508        | 325.0  |
| 28 | T17-2 (south)   | 16-Jan                    | 30-Apr                  | 0.426        | 272.9  |
| 29 | T17-2-L1        | 16-Jan                    | 30-Apr                  | 0.119        | 76.1   |
| 30 | T18-0           | 16-Jan                    | 30-Apr                  | 0.529        | 338.5  |
| 31 | T21 (east)      | 16-Oct                    | 30-Apr                  | 0.431        | 275.6  |
| 32 | T21 (west)      | 16-Jan                    | 30-Apr                  | 0.064        | 40.8   |
| 33 | T21-L1 (east)   | 16-Jan                    | 30-Apr                  | 0.216        | 138.3  |
| 34 | T21-L2          | 16-Jan                    | 30-Apr                  | 0.216        | 138.5  |
| 35 | T21-L3 (west)   | 16-Jan                    | 30-Apr                  | 0.019        | 11.9   |
| 36 | T21-L4          | 16-Jan                    | 30-Apr                  | 0.086        | 55.3   |
| 37 | T23-5 (north)   | 1-Dec                     | 30-Apr                  | 0.108        | 69.3   |
| 38 | T25-3           | 16-Jan                    | 30-Apr                  | 0.261        | 167.3  |
| 39 | T37-2           | 16-Jan                    | 30-Apr                  | 0.590        | 377.8  |
| 40 | T37-2-L1 (east) | 16-Jan                    | 30-Apr                  | 0.074        | 47.1   |

| 41 | T37-2-L1 (west) | 16-Oct | 30-Apr | 0.108 | 69.1  |
|----|-----------------|--------|--------|-------|-------|
| 42 | T37-2-L2        | 16-Jan | 30-Apr | 0.065 | 41.6  |
| 43 | T37-2-L3        | 16-Jan | 30-Apr | 0.049 | 31.3  |
| 44 | T37-2-L4        | 16-Jan | 30-Apr | 0.188 | 120.1 |

**Table 3**. Summary of DWMP areas by modified dust season.

| DWMP Season           | Number of<br>areas | Square Miles | Acres   |
|-----------------------|--------------------|--------------|---------|
| October 16 - April 30 | 8                  | 2.903        | 1,857.9 |
| December 1 - April 30 | 5                  | 1.164        | 745.0   |
| January 16 - April 30 | 31                 | 9.083        | 5,813.1 |
| TOTAL                 | 44                 | 13.150       | 8,416.0 |

#### 4.0 REFERENCES

- 2014 SJ. Stipulated Judgement for Respondent and Defendant Great Basin Unified Air Pollution Control District. Superior Court of the State of California, County of Sacramento. December 19, 2014.
- 2014 SJ, Attachment C. Protocol for Monitoring and Enforcing Owens Lake Tillage with BACK Backup. Found In: Stipulated Judgement for Respondent and Defendant Great Basin Unified Air Pollution Control District. Superior Court of the State of California, County of Sacramento. December 19, 2014.
- GBUAPCD, 2008. <u>2008 Owens Valley PM10 Planning Area Demonstration of Attainment State</u> <u>Implementation Plan</u>, Great Basin Unified Air Pollution Control District, Bishop, CA, January 2008.
- GBUAPCD 2015. Findings and Order Granting Regular Variance For Shallow Flood Areas on
   Owens Lake. Variance Order Docket No. GB15-01 by the Hearing Board of the Great
   Basin Unified Air Pollution Control District. Hearing date July 22, 2015.
- GBUAPCD 2016a. <u>2016 Owens Lake Dust Source Identification Program Protocol.</u> Great Basin Unified Air Pollution Control District. 2016.
- GBUAPCD 2016b. <u>Technical Report, 2016 Owens Lake Dynamic Water Management Plan</u>. Great Basin Unified Air Pollution Control District. 2016.